Skip to main content

Semantic Shape Models for Leaf Species Identification

  • Conference paper
  • First Online:
Advanced Concepts for Intelligent Vision Systems (ACIVS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9386))

  • 2921 Accesses

Abstract

We present two complementary botanical-inspired leaf shape representation models for the classification of simple leaf species (leaves with one compact blade). The first representation is based on some linear measurements that characterise variations of the overall shape, while the second consists of semantic part-based segment models. These representations have two main advantages: First, they only require the extraction of two points: the base and apex, which are the key characterisation points of simple leaves. The second advantage is the complementary of the proposed model representations, which provides robustness against large leaf species variations as well as high inter-species and low intra-class similarity that occurs for some species. For the decision procedure, we use a two-stage Bayesian framework: the first concerns each shape model separately and the second is a combination of classification scores (posterior probabilities) obtained from each shape model. Experiments carried out on real world leaf images, the simple leaves of the Pl@ntLeaves scan images (46 species), show an increase in performance compared to previous related work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Backes, A.R., Bruno, O.M.: Plant leaf identification using color and multi-scale fractal dimension. Computer Science 6134, 463–470 (2010)

    Google Scholar 

  2. Belhumeur, P.N., Chen, D., Feiner, S.K., Jacobs, D.W., Kress, W.J., Ling, H., Lopez, I., Ramamoorthi, R., Sheorey, S., White, S., Zhang, L.: Searching the world’s Herbaria: a system for visual identification of plant species. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 116–129. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Cerutti, G., Tougne, L., Mille, J., Vacavant, A., Coquin, D.: Guiding Active Contours for Tree Leaf Segmentation and Identification (2011)

    Google Scholar 

  4. Cope, J.S., Corney, D., Clark, J.Y., Remagnino, P., Wilkin, P.: Review: Plant species identification using digital morphometrics: A review. Expert Syst. Appl., 7562–7573 (2012)

    Google Scholar 

  5. Florindo, J.B., Backes, A.R., Bruno, O.M.: Leaves shape classification using curvature and fractal dimension. Computer Science 6134, 456–462 (2010)

    Google Scholar 

  6. Goëau, H., Joly, A., Selmi, S., Bonnet, P., Mouysset, E., Joyeux, L.: Visual-based plant species identification from crowdsourced data. ACM Multimedia (2011)

    Google Scholar 

  7. Goëau, H., Bonnet, P., Joly, A., Boujemaa, N., Barthelemy, D., Molino, J.F., Birnbaum, P., Mouysset, E., Picard, M.: The clef 2011 plant images classification task. In: Working Notes of CLEF 2011 Conference (2011)

    Google Scholar 

  8. Group. 65p, L.A.W.: Manual of Leaf Architecture. Department of Paleobiology Smithsonian Institution, Cornell University Press (1999–2000)

    Google Scholar 

  9. Haibin, G.A., Agarwal, G., Ling, H., Jacobs, D., Shirdhonkar, S., Kress, W.J., Russell, R., Belhumeur, P., Dixit, A., Feiner, S., Mahajan, D., Sunkavalli, K., Ramamoorthi, R., White, S.: First steps toward an electronic field guide for plants. Taxon 55, 597–610 (2006)

    Article  Google Scholar 

  10. Kumar, N., Belhumeur, P.N., Biswas, A., Jacobs, D.W., Kress, W.J., Lopez, I.C., Soares, J.V.B.: Leafsnap: a computer vision system for automatic plant species identification. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 502–516. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Mokhtarian, F., Abbasi, S.: Matching shapes with self-intersections:application to leaf classification. IEEE Transactions on Image Processing 13, 653–661 (2004)

    Article  Google Scholar 

  12. Mokhtarian, F., Mackworth, A.: Scale-based description and recognition of planar curves and two-dimensional shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI 8, 34–43 (1986)

    Article  Google Scholar 

  13. Mokhtarian, F., Mackworth, A.K.: A theory of multiscale, curvature-based shape representation for planar curves. IEEE Transactions on Pattern Analysis and Machine Intelligence 14, 789–805 (1992)

    Article  Google Scholar 

  14. Mouine, S., Yahiaoui, I., Verroust-Blondet, A.: A shape-based approach for leaf classification using multiscaletriangular representation. In: ICMR (2013)

    Google Scholar 

  15. Mzoughi, O., Yahiaoui, I., Boujemaa, N., Zagrouba, E.: Advanced tree species identification using multiple leaf parts image queries. In: IEEE International Conference on Image Processing (ICIP) (2013)

    Google Scholar 

  16. Sfar, A.R., Boujemaa, N., Geman, D.: Vantage feature frames for fine-grained categorization. In: CVPR. IEEE (2013)

    Google Scholar 

  17. Suk, T., Flusser, J., Novotný, P.: Comparison of leaf recognition by moments and Fourier descriptors. In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds.) CAIP 2013, Part I. LNCS, vol. 8047, pp. 221–228. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  18. Sun, K., Super, B.: Classification of contour shapes using class segment sets. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005 (2005)

    Google Scholar 

  19. Wang, Z., Chi, Z., Feng, D.: Shape based leaf image retrieval. In: VISP, pp. 34–43 (2003)

    Google Scholar 

  20. Yahiaoui, I., Mzoughi, O., Boujemaa, N.: Leaf shape descriptor for tree species identification. In: ICME2012 (2012)

    Google Scholar 

  21. Yanikoglu, B.A., Aptoula, E., Tirkaz, C.: Sabanci-okan system at imageclef 2011: Plant identification task. In: CLEF (Notebook Papers/Labs/Workshop) (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olfa Mzoughi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Mzoughi, O., Yahiaoui, I., Boujemaa, N., Zagrouba, E. (2015). Semantic Shape Models for Leaf Species Identification. In: Battiato, S., Blanc-Talon, J., Gallo, G., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2015. Lecture Notes in Computer Science(), vol 9386. Springer, Cham. https://doi.org/10.1007/978-3-319-25903-1_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25903-1_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25902-4

  • Online ISBN: 978-3-319-25903-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics