Abstract
When in a pipeline a robust global motion estimation is needed, RANSAC algorithm is the usual choice. Unfortunately, since RANSAC is an iterative method based on random analysis, it is not suitable for real-time processing. This paper presents an outlier removal algorithm, which reaches a robust estimation (at least equal to RANSAC) with really low power consumption and can be employed for embedded time implementation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Battiato, S., Farinella, G.M., Giudice, O., Puglisi, G.: Aligning Shapes for Symbol Classification and Retrieval Multimedia Tools and Applications. Springer (2015)
Bosco, A., Bruna, A., Battiato, S., Bella G., Puglisi, G.: Digital Video Stabilization through Curve Warping Techniques. IEEE Transactions on Consumer Electronics (2008)
Battiato, S., Bruna, A., Puglisi, G.: A Robust Block Based Image/Video Registration Approach for Mobile Imaging Devices. IEEE Transactions on Multimedia (2010)
Puglisi, G., Battiato, S.: A Robust Image Alignment Algorithm for Video Stabilization Purposes. IEEE Transactions on Circuits and Systems for Video Technology (2011)
Astola, J., Kuosmanen, P.: Fundamentals of Nonlinear Digital Filtering. CRC Press. Boca Raton, New York (1997)
Ling, L., Yin, R., Wang, X.: Nonlinear filters for reducing spiky noise: 2-dimensions. In: Proceedings of the IEEE International Conference on Acoustic Speech and Signal Processing (1984)
Pearson, R.: Data cleaning for dynamic modeling and control. In: European Control Conference (1999)
Fischler, M.A., Bolles, R.C.: Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Communications of the ACM 24 (1981)
Matas, J., Chum, O.: Randomized RANSAC with Td, d test. Image and Vision Computing (2004)
Capel, D.: An effective bail-out test for RANSAC consensus scoring. In: Proceedings of British Machine Vision Conference (2005)
Matas, J., Chum, O.: Randomized RANSAC with sequential probability ratio test. In: Proceedings of ICCV (2005)
Chum, O., Matas, J., Kittler, J.: Locally optimized RANSAC. In: Michaelis, B., Krell, G. (eds.) DAGM 2003. LNCS, vol. 2781, pp. 236–243. Springer, Heidelberg (2003)
Tordoff, B., Murray, D.W.: Guided sampling and consensus for motion estimation. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part I. LNCS, vol. 2350, pp. 82–96. Springer, Heidelberg (2002)
Chum, O., Matas, J.: Matching with PROSAC - progressive sample consensus. In: Proceedings of CVPR (2005)
Nister, D.: Preemptive RANSAC for live structure and motion estimation. In: Proceedings of ICCV (2003)
Battiato, S., Farinella, G.M., Messina, E., Puglisi, G.: A Robust Forensic Hash Component for Image Alignment. International Conference on Image Analysis and Processing (2011)
Chen, H.H., Liang, C., Peng, Y., Chang, H.: Integration of Digital Stabilizer With Video Codec for Digital Video Cameras. IEEE Transaction Circuits System Video Technology (2007)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision (2004)
Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006)
Calonder, M., Lepetit, V., Ozuysal, M., Trzcinski, T., Strecha, C., Fua, P.: Computing a Local Binary Descriptor Very Fast. IEEE Transactions on Pattern Analysis and Machine Intelligence (2012)
Spampinato, G., Bruna, A.: A method and device for stabilizing video sequences, related video capture apparatus and computer program product. Patent US20140204227 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Spampinato, G., Bruna, A., Farinella, G.M., Battiato, S., Puglisi, G. (2015). Fast and Low Power Consumption Outliers Removal for Motion Vector Estimation. In: Battiato, S., Blanc-Talon, J., Gallo, G., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2015. Lecture Notes in Computer Science(), vol 9386. Springer, Cham. https://doi.org/10.1007/978-3-319-25903-1_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-25903-1_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-25902-4
Online ISBN: 978-3-319-25903-1
eBook Packages: Computer ScienceComputer Science (R0)