Abstract
Interactive video editing and analysis has a broad impact but it is still a very challenging task. Real-time video segmentation requires carefully defining how to represent the image content, and hierarchical models have shown their ability to provide efficient ways to access color image data. Furthermore, algorithms allowing fast construction of such representations have been introduced recently. Nevertheless, these methods are most often unable to address (potentially endless) video streams, due to memory limitations. In this paper, we propose a buffering strategy to build a hierarchical representation combining color, spatial, and temporal information from a color video stream. We illustrate its relevance in the context of interactive object selection.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Al-Dujaili, A., Merciol, F., Lefèvre, S.: GraphBPT: an efficient hierarchical data structure for image representation and probabilistic inference. In: Benediktsson, J.A., Chanussot, J., Najman, L., Talbot, H. (eds.) Mathematical Morphology and Its Applications to Signal and Image Processing. LNCS, vol. 9082, pp. 301–312. Springer, Heidelberg (2015)
Bai, X., Wang, J., Simons, D., Sapiro, G.: Video snapcut: robust video object cutout using localized classifiers. In: Proceedings of the SIGGRAPH, pp. 1–11 (2009)
Boykov, Y., Funka-Lea, G.: Graph cuts and efficient n-d image segmentation. International Journal of Computer Vision 70(2), 109–131 (2006)
Boykov, Y., Jolly, M.: Interactive graph cuts for optimal boundary and region segmentation of objects in n-d images. In: Proceedings of the ICCV, pp. 105–112 (2001)
Couprie, C., Farabet, C., LeCun, Y., Najman, L.: Causal graph-based video segmentation. In: IEEE International Conference on Image Processing, pp. 4249–4253 (2013)
Dorea, C., Pardas, M., Marques, F.: A motion-based binary partition tree approach to video object segmentation. IEEE International Conference on Image Processing 2, 430–433 (2005)
Gangapure, V.N., Nanda, S., Chowdhury, A.S., Jiang, X.: Causal video segmentation using superseeds and graph matching. In: Liu, C.-L., Luo, B., Kropatsch, W.G., Cheng, J. (eds.) GbRPR 2015. LNCS, vol. 9069, pp. 282–291. Springer, Heidelberg (2015)
Grundmann, M., Kwatra, V., Han, M., Essa, I.: Efficient hierarchical graph based video segmentation. IEEE CVPR (2010)
Havel, J., Merciol, F., Lefèvre, S.: Efficient schemes for computing \(\alpha \)-tree representations. In: Hendriks, C.L.L., Borgefors, G., Strand, R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 111–122. Springer, Heidelberg (2013)
Jain, S.D., Grauman, K.: Supervoxel-consistent foreground propagation in video. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part IV. LNCS, vol. 8692, pp. 656–671. Springer, Heidelberg (2014)
Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally stable extremal regions. Image and vision computing 22(10), 761–767 (2004)
Merciol, F., Lefèvre, S.: Fast image and video segmentation based on \(\alpha \)-tree multiscale representation. In: International Conference on Signal Image Technology Internet Systems, Naples, Italy, November 2012
Mukherjee, D., Wu, Q.: Streaming spatio-temporal video segmentation using gaussian mixture model. In: IEEE International Conference on Image Processing, pp. 4388–4392 (2014)
Interactive image segmentation by matching attributed relational graphs: Noma, A., Graciano, A., Jr, R.C., Consularo, L., I. Bloch. Pattern Recognition 45, 1159–1179 (2012)
Ouzounis, G.K., Soille, P.: Pattern spectra from partition pyramids and hierarchies. In: Soille, P., Pesaresi, M., Ouzounis, G.K. (eds.) ISMM 2011. LNCS, vol. 6671, pp. 108–119. Springer, Heidelberg (2011)
Palou, G., Salembier, P.: Hierarchical video representation with trajectory binary partition tree. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2099–2106 (2013)
Price, B., Morse, B., Cohen, S.: Livecut: learning-based interactive video segmentation by evaluation of multiple propagated cues. In: IEEE International Conference on Computer Vision (2009)
Pu, S., Zha, H.: Streaming video object segmentation with the adaptive coherence factor. In: IEEE International Conference on Image Processing, pp. 4235–4238 (2013)
Soille, P.: Constrained connectivity for hierarchical image partitioning and simplification. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(7), 1132–1145 (2008)
Tsai, D., Flagg, M., Rehg, J.: Motion coherent tracking with multi-label MRF optimization. British Machine Vision Conference (2010)
Vijayanarasimhan, S., Grauman, K.: Active frame selection for label propagation in videos. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part V. LNCS, vol. 7576, pp. 496–509. Springer, Heidelberg (2012)
Wang, J., Bhat, P., Colburn, R., Agrawala, M., Cohen, M.: Interactive video cutout. ACM Transactions on Graphics 24(3), 585–594 (2005)
Wang, T., Han, B., Collomosse, J.: Touchcut: Fast image and video segmentation using single-touch interaction. Computer Vision and Image Understanding 120, 14–30 (2014)
Xu, C., Corso, J.J.: Evaluation of super-voxel methods for early video processing. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2012)
Xu, C., Xiong, C., Corso, J.J.: Streaming hierarchical video segmentation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VI. LNCS, vol. 7577, pp. 626–639. Springer, Heidelberg (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Merciol, F., Lefèvre, S. (2015). Buffering Hierarchical Representation of Color Video Streams for Interactive Object Selection. In: Battiato, S., Blanc-Talon, J., Gallo, G., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2015. Lecture Notes in Computer Science(), vol 9386. Springer, Cham. https://doi.org/10.1007/978-3-319-25903-1_74
Download citation
DOI: https://doi.org/10.1007/978-3-319-25903-1_74
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-25902-4
Online ISBN: 978-3-319-25903-1
eBook Packages: Computer ScienceComputer Science (R0)