Skip to main content

Detection of Clothes Change Fusing Color, Texture, Edge and Depth Information

  • Conference paper
  • First Online:
E-Business and Telecommunications (ICETE 2014)

Abstract

Changing clothes is a basic activity of daily living (ADL) which may be used as a measurement of the functional status of e.g. an elderly person, or a person with certain disabilities. In this paper we propose a methodology for the detection of when a human has changed clothes. Our non-contact unobtrusive monitoring system is built upon the Microsoft Kinect depth camera. It uses the OpenNI SDK to detect a human skeleton and extract the upper and lower clothes’ visual features. Color, texture and edge descriptors are then extracted and fused. We evaluate our system on a publicly available set of real recordings for several users and under various illumination conditions. Our results show that our system is able to successfully detect when a user changes clothes, thus to assess the quality of the corresponding ADL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    (http://users.iit.demokritos.gr/~tyianak/ClothesCode.html)

  2. 2.

    “positive” refers to clothes change detection, therefore “negative” means “no clothes change”.

References

  1. Microsoft kinect sensor (2011). http://www.microsoft.com/en-us/kinectforwindows/. Accessed 1 April 2013

  2. Cushen, G.A., Nixon, M.S.: Real-time semantic clothing segmentation. In: Bebis, G., et al. (eds.) ISVC 2012, Part I. LNCS, vol. 7431, pp. 272–281. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  3. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Bossard, L., Dantone, M., Leistner, C., Wengert, C., Quack, T., Van Gool, L.: Apparel classification with style. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012, Part IV. LNCS, vol. 7727, pp. 321–335. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  5. Chen, H., Gallagher, A., Girod, B.: Describing clothing by semantic attributes. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 609–623. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  6. Collin, C., Wade, D.: The barthel adl index: a standard measure of physical disability? Disabil. Rehabil. 10(2), 64–67 (1988)

    Google Scholar 

  7. Collin, C., Wade, D., Davies, S., Horne, V.: The barthel adl index: a reliability study. Disabil. Rehabil. 10(2), 61–63 (1988)

    Google Scholar 

  8. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2005, CVPR 2005, vol. 1, pp. 886–893. IEEE (2005)

    Google Scholar 

  9. Fleury, A., Vacher, M., Noury, N.: SVM-based multimodal classification of activities of daily living in health smart homes: sensors, algorithms, and first experimental results. IEEE Trans. Inf. Technol. Biomed. 14(2), 274–283 (2010)

    Article  Google Scholar 

  10. Kalantidis, Y., Kennedy, L., Li, L.J.: Getting the look: clothing recognition and segmentation for automatic product suggestions in everyday photos. In: Proceedings of the 3rd Conference on International Conference on Multimedia Retrieval, pp. 105–112. ACM (2013)

    Google Scholar 

  11. Liu, S., Feng, J., Song, Z., Zhang, T., Lu, H., Xu, C., Yan, S.: Hi, magic closet, tell me what to wear! In: Proceedings of the 20th International Conference on Multimedia, pp. 619–628. ACM (2012)

    Google Scholar 

  12. Liu, S., Song, Z., Liu, G., Xu, C., Lu, H., Yan, S.: Street-to-shop: cross-scenario clothing retrieval via parts alignment and auxiliary set. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3330–3337. IEEE (2012)

    Google Scholar 

  13. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  14. Maitin-Shepard, J., Cusumano-Towner, M., Lei, J., Abbeel, P.: Cloth grasp point detection based on multiple-view geometric cues with application to robotic towel folding. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 2308–2315. IEEE (2010)

    Google Scholar 

  15. Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recogn. 29(1), 51–59 (1996)

    Article  Google Scholar 

  16. Ramisa, A., Alenya, G., Moreno-Noguer, F., Torras, C.: Using depth and appearance features for informed robot grasping of highly wrinkled clothes. In: International Conference on Robotics and Automation, pp. 1703–1708. IEEE (2012)

    Google Scholar 

  17. Self-maintenance, P.: Assessment of older people: self-maintaining and instrumental activities of daily living (1969)

    Google Scholar 

  18. Shotton, J., Sharp, T., Kipman, A., Fitzgibbon, A., Finocchio, M., Blake, A., Cook, M., Moore, R.: Real-time human pose recognition in parts from single depth images. Commun. ACM 56(1), 116–124 (2013)

    Article  Google Scholar 

  19. Spyrou, E., Le Borgne, H., Mailis, T., Cooke, E., Avrithis, Y., O’Connor, N.E.: Fusing MPEG-7 visual descriptors for image classification. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3697, pp. 847–852. Springer, Heidelberg (2005)

    Google Scholar 

  20. Stikic, M., Huynh, T., Laerhoven, K.V., Schiele, B.: ADL recognition based on the combination of RFID and accelerometer sensing. In: Pervasive Computing Technologies for Healthcare, 2008, pp. 258–263. IEEE (2008)

    Google Scholar 

  21. Wang, X., Han, T.X., Yan, S.: An HOG-LBP human detector with partial occlusion handling. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 32–39. IEEE (2009)

    Google Scholar 

  22. Willimon, B., Birchfleld, S., Walker, I.: Classification of clothing using interactive perception. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 1862–1868. IEEE (2011)

    Google Scholar 

  23. Willimon, B., Walker, I., Birchfield, S.: A new approach to clothing classification using mid-level layers. In: Proceedings of the International Conference on Robotics and Automation (ICRA) (2013)

    Google Scholar 

  24. Xia, L., Chen, C.C., Aggarwal, J.: Human detection using depth information by kinect. In: 2011 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 15–22. IEEE (2011)

    Google Scholar 

  25. Zhang, Z.: Microsoft kinect sensor and its effect. IEEE Multimedia 19(2), 4–10 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no 288532. For more details, please see http://www.usefil.eu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios Sgouropoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Sgouropoulos, D., Giannakopoulos, T., Siantikos, G., Spyrou, E., Perantonis, S. (2015). Detection of Clothes Change Fusing Color, Texture, Edge and Depth Information. In: Obaidat, M., Holzinger, A., Filipe, J. (eds) E-Business and Telecommunications. ICETE 2014. Communications in Computer and Information Science, vol 554. Springer, Cham. https://doi.org/10.1007/978-3-319-25915-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25915-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25914-7

  • Online ISBN: 978-3-319-25915-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics