Skip to main content

Contrast Pattern Mining in Folk Music Analysis

  • Chapter
  • First Online:
Computational Music Analysis

Abstract

Comparing groups in data is a common theme in corpus-level music analysis and in exploratory data mining. Contrast patterns describe significant differences between groups. This chapter introduces the task and techniques of contrast pattern mining and reviews work in quantitative and computational folk music analysis as mining for contrast patterns. Three case studies are presented in detail to illustrate different pattern representations, datasets and groupings of folk music corpora, and pattern mining methods: subgroup discovery of global feature patterns in European folk music, emerging pattern mining of sequential patterns in Cretan folk tunes, and association rule mining of positive and negative patterns in Basque folk music. While this chapter focuses on examples in folk music analysis, the concept of contrast patterns offers opportunities for computational music analysis more generally, which can draw on both musicological traditions of quantitative comparative analysis and research in contrast data mining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrawal, R. and Srikant, R. (1994). Fast algorithms for mining association rules. In Proceedings of the 20th International Conference on Very Large Data Bases (VLDB 1994), pages 487–499, Santiago de Chile, Chile.

    Google Scholar 

  • Agrawal, R. and Srikant, R. (1995). Mining sequential patterns. In Proceedings of the 11th International Conference on Data Engineering (ICDE 1995), pages 3–14, Taipei, Taiwan.

    Google Scholar 

  • Albrecht, J. D. and Huron, D. (2014). A statistical approach to tracing the historical development of major and minor pitch distributions, 1400–1750. Music Perception, 31(4):223–243.

    Google Scholar 

  • Alessandri, E., Eiholzer, H., and Williamon, A. (2014). Reviewing critical practice: an analysis of Gramophone’s reviews of Beethoven’s piano sonatas, 1923–2010. Musicae Scientiae, 18(2):131–149.

    Google Scholar 

  • Ali, K., Manganaris, S., and Srikant, R. (1997). Partial classification using association rules. In Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining (KDD-97), pages 115–118, Newport Beach, CA, USA.

    Google Scholar 

  • Anagnostopoulou, C., Giraud, M., and Poulakis, N. (2013). Melodic contour representations in the analysis of children’s songs. In Proceedings of the 3rd International Workshop on Folk Music Analysis (FMA 2013), pages 40–42, Amsterdam, Netherlands.

    Google Scholar 

  • Angluin, D. (1980). Finding patterns common to a set of strings. Journal of Computer and System Sciences, 21:46–62.

    Google Scholar 

  • Antila, C. and Cumming, J. (2014). The VIS framework: analyzing counterpoint in large datasets. In Proceedings of the 15th International Society of Music Information Retrieval Conference (ISMIR 2014), pages 71–76, Taipei, Taiwan.

    Google Scholar 

  • Atzmüller, M. (2015). Subgroup discovery: advanced review. WIREs Data Mining and Knowledge Discovery, 5(1):35–49.

    Google Scholar 

  • Baader, F., Calvanese, D., McGuiness, D., Nardi, D., and Patel-Schneider, P. F., editors (2003). The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press.

    Google Scholar 

  • Bay, S. D. (2000). Multivariate discretization of continuous variables for set mining. In Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD-2000), pages 315–319, Boston, MA, USA.

    Google Scholar 

  • Bay, S. D. and Pazzani, M. J. (2001). Detecting group differences: mining contrast sets. Data Mining and Knowledge Discovery, 5(3):213–246.

    Google Scholar 

  • Bohak, C. and Marolt, M. (2009). Calculating similarity of folk song variants with melody-based features. In Proceedings of the 10th International Society for Music Information Retrieval Conference (ISMIR 2009), pages 597–601, Kobe, Japan.

    Google Scholar 

  • Bohlman, P. V. (1988). The Study of Folk Music in the Modern World. Indiana University Press.

    Google Scholar 

  • Bronson, B. H. (1959). Toward the comparative analysis of British-American folk tunes. The Journal of American Folklore, 72(284):165–191.

    Google Scholar 

  • Carter, T. (1986/1987). Music publishing in Italy, c.1580–c.1625: some preliminary observations. Royal Musical Association Research Chronicle, 20:19–37.

    Google Scholar 

  • Chan, S., Kao, B., Yip, C. L., and Tang, M. (2003). Mining emerging substrings. In Proceedings of the 8th International Conference on Database Systems for Advanced Applications (DASFAA 2003), pages 119–126, Kyoto, Japan.

    Google Scholar 

  • Clark, P. and Niblett, T. (1989). The CN2 induction algorithm. Machine Learning, 3(4):261–283.

    Google Scholar 

  • Comin, M. and Parida, L. (2008). Detection of subtle variations as consensus motifs. Theoretical Computer Science, 395(2–3):158–170.

    Google Scholar 

  • Conklin, D. (2002). Representation and discovery of vertical patterns in music. In Proceedings of the 2nd International Conference on Music and Artificial Intelligence (ICMAI 2002), pages 32–42, Edinburgh, UK.

    Google Scholar 

  • Conklin, D. (2009). Melody classification using patterns. In 2nd International Workshop on Machine Learning and Music at ECML/PKDD 2009 (MML 2009), Bled, Slovenia.

    Google Scholar 

  • Conklin, D. (2010a). Discovery of distinctive patterns in music. Intelligent Data Analysis, 14:547–554.

    Google Scholar 

  • Conklin, D. (2010b). Distinctive patterns in the first movement of Brahms’ String Quartet in C minor. Journal of Mathematics and Music, 4(2):85–92.

    Google Scholar 

  • Conklin, D. (2013). Antipattern discovery in folk tunes. Journal of New Music Research, 42(2):161–169.

    Google Scholar 

  • Conklin, D. and Anagnostopoulou, C. (2011). Comparative pattern analysis of Cretan folk songs. Journal of New Music Research, 40(2):119–125.

    Google Scholar 

  • Conklin, D. and Bergeron, M. (2008). Feature set patterns in music. Computer Music Journal, 32(1):60–70.

    Google Scholar 

  • Conklin, D. and Witten, I. H. (1995). Multiple viewpoint systems for music prediction. Journal of New Music Research, 24(1):51–73.

    Google Scholar 

  • Cook, N. (2004). Computational and comparative musicology. In Clarke, E. and Cook, N., editors, Empirical Musicology: Aims, Methods, Prospects, pages 103–126. Oxford University Press.

    Google Scholar 

  • Cornelis, C., Yan, P., Zhang, X., and Chen, G. (2006). Mining positive and negative association rules from large databases. In Proceedings of the IEEE International Conference on Cybernetics and Intelligent Systems, pages 613–618, Bangkok, Thailand.

    Google Scholar 

  • Cornelis, O., Lesaffre, M., Moelants, D., and Leman, M. (2010). Access to ethnic music: advances and perspectives in content-based music information retrieval. Signal Processing, 90:1008–1031.

    Google Scholar 

  • Csébfalvy, K., Havass, M., Járdányi, P., and Vargyas, L. (1965). Systematization of tunes by computers. Studia Musicologica Academiae Scientiarum Hungaricae, 7:253–257.

    Google Scholar 

  • Densmore, F. (1913). Chippewa Music II. Smithsonian Institution Bureau of American Ethnology Bulletin 53.

    Google Scholar 

  • Densmore, F. (1918). Teton Sioux Music. Smithsonian Institution Bureau of American Ethnology Bulletin 61.

    Google Scholar 

  • Densmore, F. (1922). Northern Ute Music. Smithsonian Institution Bureau of American Ethnology Bulletin 75.

    Google Scholar 

  • Densmore, F. (1929). Pawnee Music. Smithsonian Institution Bureau of American Ethnology Bulletin 93.

    Google Scholar 

  • Densmore, F. (1932). Yuman and Yaqui Music. Smithsonian Institution Bureau of American Ethnology Bulletin 110.

    Google Scholar 

  • Dong, G. and Li, J. (1999). Efficient mining of emerging patterns: discovering trends and differences. In Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD-99), pages 43–52, San Diego, CA, USA.

    Google Scholar 

  • Edström, O. (1999). From schottis to bonnjazz – some remarks on the construction of Swedishness. Yearbook for Traditional Music, 31:27–41.

    Google Scholar 

  • Elscheková, A. (1965). General considerations on the classification of folk tunes. Studia Musicologica Academiae Scientiarum Hungaricae, 7:259–262.

    Google Scholar 

  • Elscheková, A. (1966). Methods of classification of folk tunes. Journal of the International Folk Music Council, 18:56–76.

    Google Scholar 

  • Elscheková, A. (1999). Musikvergleich und Computertechnik. Croatian Journal of Ethnology, 36(2):105–115.

    Google Scholar 

  • Forrest, J. and Heaney, M. (1991). Charting early morris. Folk Music Journal, 6(2):169–186.

    Google Scholar 

  • Freeman, L. C. and Merriam, A. P. (1956). Statistical classification in anthropology: an application to ethnomusicology. American Anthropologist, 58:464–472.

    Google Scholar 

  • Fujinaga, I. and Weiss, S. F. (2004). Music. In Schreibman, S., Siemens, R., and Unsworth, J., editors, A Companion to Digital Humanities, pages 97–107. Blackwell.

    Google Scholar 

  • Fürnkranz, J., Gamberger, D., and Lavrač, N. (2012). Foundations of Rule Learning. Springer.

    Google Scholar 

  • Geng, L. and Hamilton, H. J. (2006). Interestingness measures for data mining: a survey. ACM Computing Surveys, 38(3):1–32.

    Google Scholar 

  • Grauer, V. A. (1965). Some song-style clusters – a preliminary study. Ethnomusicology, 9(3):265–271.

    Google Scholar 

  • Gundlach, R. H. (1932). A quantitative analysis of Indian music. The American Journal of Psychology, 44(1):133–145.

    Google Scholar 

  • Hand, D., Mannila, H., and Smyth, P. (2001). Principles of Data Mining. The MIT Press.

    Google Scholar 

  • Herrera, F., Carmona, C. J., González, P., and del Jesus, M. J. (2011). An overview on subgroup discovery: foundations and applications. Knowledge and Information Systems, 29(3):495–525.

    Google Scholar 

  • Hess, A. G. (1953). The transition from harpsichord to piano. The Galpin Society Journal, 6:75–94.

    Google Scholar 

  • Hillewaere, R. (2013). Computational models for folk music classification. PhD thesis, Faculty of Sciences, Vrije Universiteit Brussel, Belgium.

    Google Scholar 

  • Hillewaere, R., Manderick, B., and Conklin, D. (2009). Global feature versus event models for folk song classification. In Proceedings of the 10th International Society for Music Information Retrieval Conference (ISMIR 2009), pages 729–733, Kobe, Japan.

    Google Scholar 

  • Hoshovs’kyj, V. (1965). The experiment of systematizing and cataloguing folk tunes following the principles of musical dialectology and cybernetics. Studia Musicologica Academiae Scientiarum Hungaricae, 7:273–286.

    Google Scholar 

  • Huron, D. and Ommen, A. (2006). An empirical study of syncopation in American popular music, 1890–1939. Music Theory Spectrum, 28(2):211–231.

    Google Scholar 

  • Járdányi, P. (1965). Experiences and results in systematizing Hungarian folk-songs. Studia Musicologica Academiae Scientiarum Hungaricae, 7:287–291.

    Google Scholar 

  • Jesser, B. (1991). Interaktive Melodieanalyse. Methodik und Anwendung computergestützter Analyseverfahren in Musikethnologie und Volksliedforschung: typologische Untersuchung der Balladensammlung des DVA. Studien zur Volksliedforschung 12. Peter Lang.

    Google Scholar 

  • Juhász, Z. (2006). A systematic comparison of different European folk music traditions using self-organizing maps. Journal of New Music Research, 35(2):95–112.

    Google Scholar 

  • Juhász, Z. and Sipos, J. (2010). A comparative analysis of Eurasian folksong corpora, using self organising maps. Journal of Interdisciplinary Music Studies, 4(1):1–16.

    Google Scholar 

  • Kavšek, B. and Lavrač, N. (2006). APRIORI-SD: adapting association rule learning to subgroup discovery. Applied Artificial Intelligence, 20:543–583.

    Google Scholar 

  • Keller, M. S. (1984). The problem of classification in folksong research: a short history. Folklore, 95(1):100–104.

    Google Scholar 

  • Klösgen, W. (1996). Explora: a multipattern and multistrategy discovery assistant. In Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P., editors, Advances in Knowledge Discovery and Data Mining, pages 249–271. MIT Press.

    Google Scholar 

  • Klösgen, W. (1999). Applications and research problems of subgroup mining. In Raś, Z. W. and Skowron, A., editors, Foundations of Intelligent Systems, pages 1–15. Springer.

    Google Scholar 

  • Kolinski, M. (1982). Reiteration quotients: a cross-cultural comparison. Ethnomusicology, 26(1):85–90.

    Google Scholar 

  • Kopiez, R., Lehmann, A. C., and Klassen, J. (2009). Clara Schumann’s collection of playbills: a historiometric analysis of life-span development, mobility, and repertoire canonization. Poetics, 37:50–73.

    Google Scholar 

  • Lampert, V. (1982). Bartók’s choice of theme for folksong arrangement: some lessons of the folk-music sources of Bartók’s works. Studia Musicologica Academiae Scientiarum Hungaricae, 24(3/4):401–409.

    Google Scholar 

  • Lavrač, N., Kavs̆ek, B., Flach, P., and Todorovski, L. (2004). Subgroup discovery with CN2-SD. Journal of Machine Learning Research, 5:153–188.

    Google Scholar 

  • Levesque, H. J. and Brachman, R. J. (1987). Expressiveness and tractability in knowledge representation and reasoning. Computational Intelligence, 3:78–92.

    Google Scholar 

  • Lincoln, H. B. (1970). The current state of music research and the computer. Computers and the Humanities, 5(1):29–36.

    Google Scholar 

  • Lincoln, H. B. (1974). Use of the computer in music research: a short report on accomplishments, limitations, and future needs. Computers and the Humanities, 8(5/6):285–289.

    Google Scholar 

  • Liu, B., Hsu, W., and Ma, Y. (1998). Integrating classification and association rule mining. In Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining (KDD-98), pages 80–86, New York, USA.

    Google Scholar 

  • Lomax, A. (1959). Folk song style. American Anthropologist, 61(6):927–954.

    Google Scholar 

  • Lomax, A. (1962). Song structure and social structure. Ethnology, 1(4):425–451.

    Google Scholar 

  • Marsden, A. (2009). “What was the question?”: music analysis and the computer. In Crawford, T. and Gibson, L., editors, Modern Methods for Musicology: Prospects, Proposals and Realities, pages 137–147. Ashgate.

    Google Scholar 

  • Martíi Pérez, J., Cunningham, M., Pelinski, R., Martínez García, S., de Larrea Palacín, A., and Aiats, J. (2001). Spain. II: Traditional and popular music. In Sadie, S., editor, New Grove Dictionary of Music and Musicians, volume 24, pages 135–154. Macmillan, 2nd edition.

    Google Scholar 

  • McKay, C. (2010). Automatic music classification with jMIR. PhD thesis, Schulich School of Music, McGill University, Montreal, Canada.

    Google Scholar 

  • Meredith, D., Lemström, K., and Wiggins, G. (2002). Algorithms for discovering repeated patterns in multidimensional representations of polyphonic music. Journal of New Music Research, 31(4):321–345.

    Google Scholar 

  • Mooney, C. H. and Roddick, J. F. (2013). Sequential pattern mining: approaches and algorithms. ACM Computing Surveys, 45(2):Article 19.

    Google Scholar 

  • Müllensiefen, D. (2009). Fantastic: Feature ANalysis Technology Accessing Statistics (In a Corpus): Technical report v1.5. Technical report, Goldsmiths College, University of London, London, UK.

    Google Scholar 

  • Müllensiefen, D. and Frieler, K. (2004). Optimizing measures of melodic similarity for the exploration of a large folk song database. In Proceedings of the 5th International Conference on Music Information Retrieval (ISMIR 2004), pages 274–280, Barcelona, Spain.

    Google Scholar 

  • Nettl, B. (1973). Comparison and comparative method in ethnomusicology. Anuario Interamericano de Investigacion Musical, 9:143–161.

    Google Scholar 

  • Nettl, B. (1975). The state of research in ethnomusicology, and recent developments. Current Musicology, 20:67–78.

    Google Scholar 

  • Nettl, B. (2005). The Study of Ethnomusicology. University of Illinois Press.

    Google Scholar 

  • Nettl, B. (2010). Nettl’s Elephant: On the History of Ethnomusicology. University of Illinois Press.

    Google Scholar 

  • Neubarth, K. (2015). Densmore revisited: contrast data mining of Native American music. In 5th International Workshop on Folk Music Analysis (FMA 2015), Paris, France. (to appear).

    Google Scholar 

  • Neubarth, K., Goienetxea, I., Johnson, C. G., and Conklin, D. (2012). Association mining of folk music genres and toponyms. In Proceedings of the 13th International Society of Music Information Retrieval Conference (ISMIR 2012), pages 7–12, Porto, Portugal.

    Google Scholar 

  • Neubarth, K., Johnson, C. G., and Conklin, D. (2013a). Descriptive rule mining of Basque folk music. In Proceedings of the 3rd International Workshop on Folk Music Analysis (FMA 2013), pages 83–85, Amsterdam, Netherlands.

    Google Scholar 

  • Neubarth, K., Johnson, C. G., and Conklin, D. (2013b). Discovery of mediating association rules for folk music analysis. In 6th International Workshop on Music and Machine Learning at ECML/PKDD 2013 (MML 2013), Prague, Czech Republic.

    Google Scholar 

  • Novak, P. K., Lavrač, N., Gamberger, D., and Krstačić, A. (2009a). CSM-SD: methodology for contrast set mining through subgroup discovery. Journal of Biomedical Informatics, 42(1):113–122.

    Google Scholar 

  • Novak, P. K., Lavrač, N., and Webb, G. (2009b). Supervised descriptive rule discovery: a unifying survey of contrast set, emerging pattern and subgroup mining. Journal of Machine Learning Research, 10:377–403.

    Google Scholar 

  • Ponce de León, P. J. and Iñesta, J. M. (2004). Statistical description models for melody analysis and characterization. In Proceedings of the 30th International Computer Music Conference (ICMC 2004), pages 149–156, Miami, Florida, USA.

    Google Scholar 

  • Post, O. and Huron, D. (2009). Western Classical music in the minor mode is slower (except in the Romantic period). Empirical Musicology Review, 4(1):2–10.

    Google Scholar 

  • Rhodes,W. (1965). The use of the computer in the classification of folk tunes. Studia Musicologica Academiae Scientiarum Hungaricae, 7:339–343.

    Google Scholar 

  • Rose, S. and Tuppen, S. (2014). Prospects for a big data history of music. In Proceedings of the 1st Digital Libraries for Musicology Workshop (DLfM 2014), pages 82–84, London, UK.

    Google Scholar 

  • Sagrillo, D. (2010). Computer analysis of Scottish national songs. In 1st International Conference on Analytical Approaches to World Music (AAWM 2010), Amherst, MA, USA.

    Google Scholar 

  • Savasere, A., Omiecinski, E., and Navathe, S. (1998). Mining for strong negative associations in a large database of customer transactions. In Proceedings of the 14th International Conference on Data Engineering (ICDE 1998), pages 494–502, Orlando, FL, USA.

    Google Scholar 

  • Schaffrath, H. (1992). The retrieval of monophonic melodies and their variants: concepts and strategies for computer-aided analysis. In Marsden, A. and Pople, A., editors, Computer Representations and Models in Music, pages 95–109. Academic Press.

    Google Scholar 

  • Scherrer, D. K. and Scherrer, P. H. (1971). An experiment in the computer measurement of melodic variation in folksong. The Journal of American Folklore, 84(332):230–241.

    Google Scholar 

  • Schneider, A. (2006). Comparative and systematic musicology in relation to ethnomusicology: a historical and methodological survey. Ethnomusicology, 50(2):236– 258.

    Google Scholar 

  • Sidorov, K., Jones, A., and Marshall, D. (2014). Music analysis as a smallest grammar problem. In Proceedings of the 15th International Society for Information Retrieval Conference (ISMIR 2014), pages 301–306, Taipei, Taiwan.

    Google Scholar 

  • Srikant, R. and Agrawal, R. (1996). Mining quantitative association rules in large relational tables. ACM SIGMOD Record, 25(2):1–12.

    Google Scholar 

  • Steinbeck, W. (1976). The use of the computer in the analysis of German folksongs. Computers and the Humanities, 10(5):287–296.

    Google Scholar 

  • Steinbeck, W. (1982). Struktur und Ähnlichkeit. Methoden automatisierter Melodienanalyse. Kieler Schriften zur Musikwissenschaft 25. Bärenreiter.

    Google Scholar 

  • Suchoff, B. (1967). Computer applications to Bartók’s Serbo-Croatian material. Tempo, 80:15–19.

    Google Scholar 

  • Suchoff, B. (1968). Computerized folk song research and the problem of variants. Computers and the Humanities, 2(4):155–158.

    Google Scholar 

  • Suchoff, B. (1970). Computer-oriented comparative musicology. In Lincoln, H. B., editor, The Computer and Music, pages 193–206. Cornell University Press.

    Google Scholar 

  • Suchoff, B. (1971). The computer and Bartók research in America. Journal of Research in Music Education, 19(1):3–16.

    Google Scholar 

  • Taminau, J., Hillewaere, R., Meganck, S., Conklin, D., Nowé, A., and Manderick, B. (2009). Descriptive subgroup mining of folk music. In 2nd International Workshop on Machine Learning and Music at ECML/PKDD 2009 (MML 2009), Bled, Slovenia.

    Google Scholar 

  • Taminau, J., Hillewaere, R., Meganck, S., Conklin, D., Nowé, A., and Manderick, B. (2010). Applying subgroup discovery for the analysis of string quartet movements. In Proceedings of the 3rd International Workshop on Music and Machine Learning at ACM Multimedia (MML 2010), pages 29–32, Florence, Italy.

    Google Scholar 

  • Toiviainen, P. and Eerola, T. (2001). A method for comparative analysis of folk music based on musical feature extraction and neural networks. In Proceedings of theVII International Symposium on Systematic and Comparative Musicology/ III International Conference on Cognitive Musicology, pages 41–45, Jyväskylä, Finland.

    Google Scholar 

  • Trowbridge, L. M. (1985/1986). Style change in the fifteenth-century chanson: a comparative study of compositional detail. The Journal of Musicology, 4(2):146–170.

    Google Scholar 

  • Tzanetakis, G., Kapur, A., Schloss, W., and Wright, M. (2007). Computational ethnomusicology. Journal of Interdisciplinary Music Studies, 1(2):1–24.

    Google Scholar 

  • van Kranenburg, P., Garbers, J., Volk, A., Wiering, F., Grijp, L., and Veltkamp, R. C. (2010). Collaborative perspectives for folk song research and music information retrieval: The indispensable role of computational musicology. Journal of Interdisciplinary Music Studies, 4(1):17–43.

    Google Scholar 

  • van Kranenburg, P. and Karsdorp, F. (2014). Cadence detection in Western traditional stanzaic songs using melodic and textual features. In Proceedings of the 15th International Society for Music Information Retrieval Conference (ISMIR 2014), pages 391–396, Taipei, Taiwan.

    Google Scholar 

  • van Kranenburg, P., Volk, A., and Wiering, F. (2013). A comparison between global and local features for computational classification of folk song melodies. Journal of New Music Research, 42(1):1–18.

    Google Scholar 

  • VanHandel, L. (2009). National metrical types in nineteenth century art song. Empirical Musicology Review, 4(4):134–145.

    Google Scholar 

  • Volk, A. and de Haas, W. B. (2013). A corpus-based study on ragtime syncopation. In Proceedings of the 14th International Society of Music Information Retrieval Conference (ISMIR 2013), pages 163–168, Curitiba, Brazil.

    Google Scholar 

  • Webb, G. I., Butler, S., and Newlands, D. (2003). On detecting differences between groups. In Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD-2003), pages 256–265, Washington, DC, USA.

    Google Scholar 

  • Witten, I. H., Frank, E., and Hall, M. A. (2011). Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, third edition. Wong, T.-T. and Tseng, K.-L. (2005). Mining negative contrast sets from data with discrete attributes. Expert Systems with Applications, 29(2):401–407.

    Google Scholar 

  • Wrobel, S. (1997). An algorithm for multi-relational discovery of subgroups. In Proceedings of the 1st European Conference on Principles of Data Mining and Knowledge Discovery (PKDD’97), pages 78–87, Trondheim, Norway.

    Google Scholar 

  • Zimmermann, A. and De Raedt, L. (2009). Cluster-grouping: from subgroup discovery to clustering. Machine Learning, 77(1):125–159.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerstin Neubarth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Neubarth, K., Conklin, D. (2016). Contrast Pattern Mining in Folk Music Analysis. In: Meredith, D. (eds) Computational Music Analysis. Springer, Cham. https://doi.org/10.1007/978-3-319-25931-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25931-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25929-1

  • Online ISBN: 978-3-319-25931-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics