Skip to main content

Pattern and Antipattern Discovery in Ethiopian Bagana Songs

  • Chapter
  • First Online:
Computational Music Analysis

Abstract

Pattern discovery is an essential computational music analysis method for revealing intra-opus repetition and inter-opus recurrence. This chapter applies pattern discovery to a corpus of songs for the bagana, a large lyre played in Ethiopia. An important and unique aspect of this repertoire is that frequent and rare motifs have been explicitly identified and used by a master bagana teacher in Ethiopia. A new theorem for pruning of statistically under-represented patterns from the search space is used within an efficient pattern discovery algorithm. The results of the chapter show that over- and under-represented patterns can be discovered in a corpus of bagana songs, and that the method can reveal with high significance the known bagana motifs of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamo, J.-M. (2001). Data Mining for Association Rules and Sequential Patterns. Springer.

    Google Scholar 

  • Agrawal, R. and Srikant, R. (1995). Mining sequential patterns. In Proceedings of the Eleventh International Conference on Data Engineering, pages 3–14, Taipei, Taiwan.

    Google Scholar 

  • Arom, S. (1997). Le “syndrome” du pentatonisme africain. Musicae Scientiae, 1(2):139–163.

    Google Scholar 

  • Artamonova, I., Frishman, G., and Frishman, D. (2007). Applying negative rule mining to improve genome annotation. BMC Bioinformatics, 8:261.

    Google Scholar 

  • Ayres, J., Gehrke, J., Yiu, T., and Flannick, J. (2002). Sequential pattern mining using a bitmap representation. In Proceedings of the International Conference on Knowledge Discovery and Data Mining, pages 429–435, Edmonton, Canada.

    Google Scholar 

  • Bay, S. and Pazzani, M. (2001). Detecting group differences: Mining contrast sets. Data Mining and Knowledge Discovery, 5(3):213–246.

    Google Scholar 

  • Collins, T., Böck, S., Krebs, F., and Widmer, G. (2014). Bridging the audio-symbolic gap: The discovery of repeated note content directly from polyphonic music audio. In Proceedings of the Audio Engineering Society’s 53rd Conference on Semantic Audio, London, UK.

    Google Scholar 

  • Conklin, D. (2009). Melody classification using patterns. In International Workshop on Machine Learning and Music, pages 37–41, Bled, Slovenia.

    Google Scholar 

  • Conklin, D. (2010a). Discovery of distinctive patterns in music. Intelligent Data Analysis, 14(5):547–554.

    Google Scholar 

  • Conklin, D. (2010b). Distinctive patterns in the first movement of Brahms’ String Quartet in C Minor. Journal of Mathematics and Music, 4(2):85–92.

    Google Scholar 

  • Conklin, D. (2013). Antipattern discovery in folk tunes. Journal of New Music Research, 42(2):161–169.

    Google Scholar 

  • Conklin, D. and Anagnostopoulou, C. (2001). Representation and discovery of multiple viewpoint patterns. In Proceedings of the International Computer Music Conference, pages 479–485, Havana, Cuba.

    Google Scholar 

  • Conklin, D. and Anagnostopoulou, C. (2011). Comparative pattern analysis of Cretan folk songs. Journal of New Music Research, 40(2):119–125.

    Google Scholar 

  • Deng, K. and Zaïane, O. R. (2009). Contrasting sequence groups by emerging sequences. In Gama, J., Santos Costa, V., Jorge, A., and Brazdil, P., editors, Discovery Science, volume 5808 of Lecture Notes in Artificial Intelligence, pages 377–384. Springer.

    Google Scholar 

  • Fernando, N. (2004). Expérimenter en ethnomusicologie. L’Homme, 171-172:284–302.

    Google Scholar 

  • Forte, A. (1983). Motivic design and structural levels in the first movement of Brahms’s String Quartet in C minor. The Musical Quarterly, 69(4):471–502.

    Google Scholar 

  • Haglin, D. J. and Manning, A. M. (2007). On minimal infrequent itemset mining. In Proceedings of the 2007 International Conference on Data Mining, pages 141–147, Las Vegas, Nevada.

    Google Scholar 

  • Herold, J., Kurtz, S., and Giegerich, R. (2008). Efficient computation of absent words in genomic sequences. BMC Bioinformatics, 9:167.

    Google Scholar 

  • Hirao, M., Hoshino, H., Shinohara, A., Takeda, M., and Arikawa, S. (2000). A practical algorithm to find the best subsequence patterns. In Arikawa, S. and Morishita,S., editors, Discovery Science, volume 1967 of Lecture Notes in Computer Science, pages 141–154. Springer.

    Google Scholar 

  • Huron, D. (1999). The new empiricism: Systematic musicology in a postmodern age. Lecture 3 from the 1999 Ernest Bloch Lectures. http://musiccog.ohiostate.edu/Music220/Bloch.lectures/3.Methodology.html. Accessed Mar 3, 2015.

  • Huron, D. (2001). What is a musical feature? Forte’s analysis of Brahms’s Opus 51, No. 1, revisited. Music Theory Online, 7(4).

    Google Scholar 

  • Ji, X., Bailey, J., and Dong, G. (2007). Mining minimal distinguishing subsequence patterns with gap constraints. Knowledge and Information Systems, 11(3):259–296.

    Google Scholar 

  • Lartillot, O. (2004). A musical pattern discovery system founded on a modeling of listening strategies. Computer Music Journal, 28(3):53–67.

    Google Scholar 

  • Lin, C.-R., Liu, N.-H., Wu, Y.-H., and Chen, A. (2004). Music classification using significant repeating patterns. In Lee, Y., Li, J., Whang, K.-Y., and Lee, D., editors, Database Systems for Advanced Applications, volume 2973 of Lecture Notes in Computer Science, pages 506–518. Springer.

    Google Scholar 

  • Meredith, D., Lemström, K., and Wiggins, G. (2002). Algorithms for discovering repeated patterns in multidimensional representations of polyphonic music. Journal of New Music Research, 31(4):321–345.

    Google Scholar 

  • Mooney, C. H. and Roddick, J. F. (2013). Sequential pattern mining – approaches and algorithms. ACM Computing Surveys, 45(2):19:1–19:39.

    Google Scholar 

  • Sawada, T. and Satoh, K. (2000). Composer classification based on patterns of short note sequences. In Proceedings of the AAAI-2000 Workshop on AI and Music, pages 24–27, Austin, Texas.

    Google Scholar 

  • Shan, M.-K. and Kuo, F.-F. (2003). Music style mining and classification by melody. IEICE Transactions on Information and Systems, E88D(3):655–659.

    Google Scholar 

  • van Helden, J., André, B., and Collado-Vides, J. (1998). Extracting regulatory sites from the upstream region of yeast genes by computational analysis of oligonucleotide frequencies. Journal of Molecular Biology, 281(5):827–842.

    Google Scholar 

  • Wang, J., Zhang, Y., Zhou, L., Karypis, G., and Aggarwal, C. C. (2009). CONTOUR: an efficient algorithm for discovering discriminating subsequences. Data Mining and Knowledge Discovery, 18(1):1–29.

    Google Scholar 

  • Webb, G. I. (2007). Discovering significant patterns. Machine Learning, 68(1):1–33.

    Google Scholar 

  • Weisser, S. (2005). Etude ethnomusicologique du bagana, lyre d’Ethiopie. PhD thesis, Université libre de Bruxelles.

    Google Scholar 

  • Weisser, S. (2006). Transcrire pour vérifier: le rythme des chants de bagana d’Ethiopie. Musurgia, XIII(2):51–61.

    Google Scholar 

  • Weisser, S. (2012). Music and Emotion. The Ethiopian Lyre Bagana. Musicae Scientiae, 16(1):3–18.

    Google Scholar 

  • Wu, X., Zhang, C., and Zhang, S. (2004). Efficient mining of both positive and negative association rules. ACM Transactions on Information Systems (TOIS), 22(3):381–405.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darrell Conklin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Conklin, D., Weisser, S. (2016). Pattern and Antipattern Discovery in Ethiopian Bagana Songs. In: Meredith, D. (eds) Computational Music Analysis. Springer, Cham. https://doi.org/10.1007/978-3-319-25931-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25931-4_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25929-1

  • Online ISBN: 978-3-319-25931-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics