Abstract
The modeling of dengue fever cases is an important task to help public health officers to plan and prepare their resources to prevent dengue fever outbreak. In this paper, we present the time-series modeling of accumulated dengue fever cases acquired from the Malaysian Open Data Government Portal. Evaluation of the forecast for future dengue fever outbreak shows promising results, as evidence is presented for the trend and seasonal nature of dengue fever outbreaks in Malaysia.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Gubler, D.J., Clark, G.G.: Dengue/dengue hemorrhagic fever: the emergence of a global health problem. Emerg. Infect. Dis. 1, 55–57 (1995)
Gubler, D.J.: Dengue and dengue hemorrhagic fever. Clin. Microbiol. Rev. 11, 480–496 (1998)
Agensi Remote Sensing Malaysia (ARSM): Laman Utama | iDengue. http://idengue.remotesensing.gov.my/idengue/index.php
Gomes, V.E.-L.: Question marks as organ-failure joins symptoms of dengue fever | Malaysia | Malay Mail Online. http://www.themalaymailonline.com/malaysia/article/question-marks-as-organ-failure-joins-symptoms-of-dengue-fever
Suaya, J.A., Shepard, D.S., Siqueira, J.B., Martelli, C.T., Lum, L.C.S., Tan, L.H., Kongsin, S., Jiamton, S., Garrido, F., Montoya, R., Armien, B., Huy, R., Castillo, L., Caram, M., Sah, B.K., Sughayyar, R., Tyo, K.R., Halstead, S.B.: Cost of dengue cases in eight countries in the Americas and Asia: a prospective study. Am. J. Trop. Med. Hyg. 80, 846–855 (2009)
Beatty, M.E., Stone, A., Fitzsimons, D.W., Hanna, J.N., Lam, S.K., Vong, S., Guzman, M.G., Mendez-Galvan, J.F., Halstead, S.B., Letson, G.W., Kuritsky, J., Mahoney, R., Margolis, H.S.: The Asia-Pacific and Americas dengue prevention boards surveillance working group: best practices in dengue surveillance: a report from the Asia-Pacific and Americas dengue prevention boards. PLoS Negl. Trop. Dis. 4, e890 (2010)
Brockwell, P.J., Davis, R.A.: Time Series: Theory and Methods. Springer Science & Business Media, Berlin (2013)
Allard, R.: Use of time-series analysis in infectious disease surveillance. Bull. World Health Organ. 76, 327–333 (1998)
Tong, S., Hu, W.: Climate variation and incidence of Ross river virus in Cairns, Australia: a time-series analysis. Environ. Health Perspect. 109, 1271–1273 (2001)
Gouveia, N., Fletcher, T.: Respiratory diseases in children and outdoor air pollution in São Paulo, Brazil: a time series analysis. Occup. Environ. Med. 57, 477–483 (2000)
Chadsuthi, S., Modchang, C., Lenbury, Y., Iamsirithaworn, S., Triampo, W.: Modeling seasonal leptospirosis transmission and its association with rainfall and temperature in Thailand using time–series and ARIMAX analyses. Asian Pac. J. Trop. Med. 5, 539–546 (2012)
Luz, P.M., Mendes, B.V.M., Codeço, C.T., Struchiner, C.J., Galvani, A.P.: Time series analysis of dengue incidence in Rio de Janeiro, Brazil. Am. J. Trop. Med. Hyg. 79, 933–939 (2008)
Lowe, R., Bailey, T.C., Stephenson, D.B., Graham, R.J., Coelho, C.A.S., Sá Carvalho, M., Barcellos, C.: Spatio-temporal modelling of climate-sensitive disease risk: towards an early warning system for dengue in Brazil. Comput. Geosci. 37, 371–381 (2011)
Cheong, Y.L., Burkart, K., Leitão, P.J., Lakes, T.: Assessing weather effects on dengue disease in Malaysia. Int. J. Environ. Res. Public. Health. 10, 6319–6334 (2013)
Husin, N.A., Salim, N., Ahmad, A.R.: Modeling of dengue outbreak prediction in Malaysia: a comparison of neural network and nonlinear regression model. In: International Symposium on Information Technology, 2008. ITSim 2008, pp. 1–4 (2008)
Husin, N.A., Salim, N., Ahmad, A.R.: Simulation of dengue outbreak prediction. Presented at the Postgraduate Annual Research Seminar 2006 (PARS 2006), Postgraduate Studies Department FSKSM, UTM Skudai May (2006)
Gersch, W.: Spectral analysis of EEG’s by autoregressive decomposition of time series. Math. Biosci. 7, 205–222 (1970)
Madjid, M., Miller, C.C., Zarubaev, V.V., Marinich, I.G., Kiselev, O.I., Lobzin, Y.V., Filippov, A.E., Casscells, S.W.: Influenza epidemics and acute respiratory disease activity are associated with a surge in autopsy-confirmed coronary heart disease death: results from 8 years of autopsies in 34 892 subjects. Eur. Heart J. 28, 1205–1210 (2007)
Zhang, J., Tsui, F.-C., Wagner, M.M., Hogan, W.R.: Detection of outbreaks from time series data using wavelet transform. In: AMIA Annual Symposium Proceedings 2003, pp. 748–752 (2003)
Yi, Q., Hoskins, R.E., Hillringhouse, E.A., Sorensen, S.S., Oberle, M.W., Fuller, S.S., Wallace, J.C.: Integrating open-source technologies to build low-cost information systems for improved access to public health data. Int. J. Health Geogr. 7, 29 (2008)
Borukhovich, E.: Open health data. http://openhealthdata.org/
Economist: Open data and health care: beggar thy neighbour | The Economist. http://www.economist.com/news/britain/21567980-how-scrutiny-freely-available-data-might-save-nhs-money-beggar-thy-neighbour
Health 2.0 Developer Challenge: NYS Health Innovation Challenge. http://www.health2con.com/devchallenge/nys-health-innovation-challenge/
Theguardian: Power to the people: how open data is improving health service delivery | Global Development Professionals Network | The Guardian. http://www.theguardian.com/global-development-professionals-network/2013/dec/02/open-data-healthcare-accountability-africa
MAMPU: Official Malaysia Open Government Portal. http://www.data.gov.my/
Moore, A., Seng, S.B., Chong, A.K.: Geostatistical modelling, analysis and mapping of epidemiology of Dengue Fever in Johor State, Malaysia (2005)
Rohani, A., Suzilah, I., Malinda, M., Anuar, I., Mohd Mazlan, I., Salmah Maszaitun, M., Topek, O., Tanrang, Y., Ooi, S.C., Rozilawati, H., Lee, H.L.: Aedes larval population dynamics and risk for dengue epidemics in Malaysia. Trop. Biomed. 28, 237–248 (2011)
Little, R.J.A., Rubin, D.B.: Statistical Analysis with Missing Data. Wiley, Hoboken (2002)
Cleveland, R.B., Cleveland, W.S., McRae, J.E., Terpenning, I.: STL: a seasonal-trend decomposition procedure based on Loess. J. Off. Stat. 6, 3–73 (1990)
Brown, R.G., Meyer, R.F.: The fundamental theorem of exponential smoothing. Oper. Res. 9, 673–685 (1961)
Hyndman, R.J., Athanasopoulos, G.: Forecasting: principles and practice. OTexts, S.l., Granada (2013)
Holt, C.C.: Forecasting seasonals and trends by exponentially weighted moving averages. Int. J. Forecast. 20, 5–10 (2004)
Gardner, E.S.: Exponential smoothing: the state of the art. J. Forecast. 4, 1–28 (1985)
Taylor, J.W.: Exponential smoothing with a damped multiplicative trend. Int. J. Forecast. 19, 715–725 (2003)
Hyndman, R., Koehler, A.B., Ord, J.K., Snyder, R.D.: Forecasting with Exponential Smoothing: the State Space Approach. Springer Science & Business Media, Berlin (2008)
Nau, R.: General seasonal ARIMA models – (0,1,1)×(0,1,1) etc. http://people.duke.edu/~rnau/seasarim.htm
Pindyck, R.S., Rubinfeld, D.L.: Econometric Models and Economic Forecasts. Irwin/McGraw-Hill, Boston (1998)
Choudhury, Z.M., Banu, S., Islam, A.M.: Forecasting dengue incidence in Dhaka, Bangladesh: a time series analysis. Dengue Bull. 32, 29–37 (2008)
Lal, V., Gupta, S., Gupta, O., Bhatnagar, S.: Forecasting incidence of dengue in Rajasthan, using time series analyses. Indian J. Public Health 56, 281 (2012)
Earnest, A., Tan, S.B., Wilder-Smith, A., Machin, D.: Comparing statistical models to predict dengue fever notifications. Comput. Math. Methods Med. 2012, e758674 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Ho, C.C., Ting, CY. (2015). Time Series Analysis and Forecasting of Dengue Using Open Data. In: Badioze Zaman, H., et al. Advances in Visual Informatics. IVIC 2015. Lecture Notes in Computer Science(), vol 9429. Springer, Cham. https://doi.org/10.1007/978-3-319-25939-0_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-25939-0_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-25938-3
Online ISBN: 978-3-319-25939-0
eBook Packages: Computer ScienceComputer Science (R0)