Skip to main content

Design Factors for Flexible Capacitive Sensors in Ambient Intelligence

  • Conference paper
  • First Online:
Ambient Intelligence (AmI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9425))

Included in the following conference series:

Abstract

Capacitive sensors in both touch and proximity varieties are becoming more common in many industrial and research applications. Each sensor requires one or more electrodes to create an electric field and measure changes thereof. The design and layout of those electrodes is crucial when designing applications and systems. It can influence range, detectable objects, or refresh rate. In the last years, new measurement systems and materials, as well as advances in rapid prototyping technologies have vastly increased the potential range of applications using flexible capacitive sensors. This paper contributes an extensive set of capacitive sensing measurements with different electrode materials and layouts for two measurement modes - self-capacitance and mutual capacitance. The evaluation of the measurement results reveals how well-suited certain materials are for different applications. We evaluate the characteristics of those materials for capacitive sensing and enable application designers to choose the appropriate material for their application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grosse-Puppendahl, T., Berghoefer, Y., Braun, A., Wimmer, R., Kuijper, A.: OpenCapSense: a rapid prototyping toolkit for pervasive interaction using capacitive sensing. In: IEEE International Conference on Pervasive Computing and Communications (2013)

    Google Scholar 

  2. Wimmer, R., Kranz, M., Boring, S., Schmidt, A.: A capacitive sensing toolkit for pervasive activity detection and recognition. In: Fifth Annual IEEE International Conference on Pervasive Computing and Communications (PerCom 2007), pp. 171–180 (2007)

    Google Scholar 

  3. Djakow, M., Braun, A., Marinc, A.: MoviBed - sleep analysis using capacitive sensors. In: Stephanidis, C., Antona, M. (eds.) UAHCI 2014, Part IV. LNCS, vol. 8516, pp. 171–181. Springer, Heidelberg (2014)

    Google Scholar 

  4. Chang, W.-Y., Chen, C.-C., Yang, C.-L.: The applications of projected capacitive array sensing in healthcare. In: 2014 IEEE International Symposium on Bioelectronics and Bioinformatics (IEEE ISBB 2014), pp. 1–4. IEEE, April 2014

    Google Scholar 

  5. Rus, S., Grosse-Puppendahl, T., Kuijper, A.: Recognition of Bed Postures Using Mutual Capacitance Sensing. In: Aarts, E., et al. (eds.) AmI 2014. LNCS, vol. 8850, pp. 51–66. Springer, Heidelberg (2014)

    Google Scholar 

  6. Weigel, M., Lu, T., Bailly, G., Oulasvirta, A., Majidi, C., Steimle, J.: Iskin: flexible, stretchable and visually customizable on-body touch sensors for mobile computing. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, CHI 2015, pp. 2991–3000. ACM, New York, NY, USA (2015)

    Google Scholar 

  7. Singh, G., Nelson, A., Robucci, R., Patel, C., Banerjee, N.: Inviz: low-power personalized gesture recognition using wearable textile capacitive sensor arrays. In: 2015 IEEE International Conference on Pervasive Computing and Communications (PerCom), March 2015

    Google Scholar 

  8. Baldwin, R., Bobovych, S., Robucci, R., Patel, C., Banerjee, N.: Gait analysis for fall prediction using hierarchical textile-based capacitive sensor arrays. In: Proceedings of the 2015 Design, Automation & Test in Europe Conference & Exhibition, DATE 2015, pp. 1293–1298. EDA Consortium, San Jose, CA, USA (2015)

    Google Scholar 

  9. Dobbelstein, D., Hock, P., Rukzio, E.: Belt: an unobtrusive touch input device for head-worn displays. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, CHI 2015, pp. 2135–2138. ACM, New York, NY, USA (2015)

    Google Scholar 

  10. Teodorescu, H.-N.: Textile-, conductive paint-based wearable devices for physical activity monitoring. In: E-Health and Bioengineering Conference (EHB), pp. 1–4. IEEE (2013)

    Google Scholar 

  11. Braun, A., Wichert, R., Kuijper, A., Fellner, D.W.: Capacitive proximity sensing in smart environments. J. Ambient Intell. Smart Environ. 7(4), 1–28 (2015)

    Google Scholar 

  12. Holleis, P., Schmidt, A., Paasovaara, S., Puikkonen, A., Häkkilä, J.: Evaluating capacitive touch input on clothes. In: Proceedings of the 10th International Conference on Human Computer Interaction with Mobile Devices and Services, MobileHCI 2008, pp. 81–90. ACM, New York, NY, USA (2008)

    Google Scholar 

  13. Karrer, T., Wittenhagen, M., Lichtschlag, L., Heller, F., Borchers, J.: Pinstripe: eyes-free continuous input on interactive clothing. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2011, pp. 1313–1322. ACM, New York, NY, USA (2011)

    Google Scholar 

  14. Ueno, A., Akabane, Y., Kato, T., Hoshino, H., Kataoka, S., Ishiyama, Y.: Capacitive sensing of electrocardiographic potential through cloth from the dorsal surface of the body in a supine position: A preliminary study. IEEE Trans. Biomed. Eng. 54(4), 759–766 (2007)

    Article  Google Scholar 

  15. Rekimoto, J.: SmartSkin: an infrastructure for freehand manipulation on interactive surfaces. In: Proceedings of the SIGCHI Conference on Human (2002)

    Google Scholar 

  16. Wimmer, R., Baudisch, P.: Modular and deformable touch-sensitive surfaces based on time domain reflectometry. In: Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology - UIST 2011, (1), p. 517 (2011)

    Google Scholar 

  17. Vega, K., Cunha, M., Fuks, H.: Hairware: conductive hair extensions as a capacitive touch input device. In: Proceedings of the 20th International Conference on Intelligent User Interfaces Companion, IUI Companion 2015, pp. 89–92. ACM, New York, NY, USA (2015)

    Google Scholar 

  18. Vega, K., Cunha, M., Fuks, H.: Hairware: the conscious use of unconscious auto-contact behaviors. In: Proceedings of the 20th International Conference on Intelligent User Interfaces, IUI 2015, pp. 78–86. ACM, New York, NY, USA (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Rus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Rus, S., Sahbaz, M., Braun, A., Kuijper, A. (2015). Design Factors for Flexible Capacitive Sensors in Ambient Intelligence. In: De Ruyter, B., Kameas, A., Chatzimisios, P., Mavrommati, I. (eds) Ambient Intelligence. AmI 2015. Lecture Notes in Computer Science(), vol 9425. Springer, Cham. https://doi.org/10.1007/978-3-319-26005-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26005-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26004-4

  • Online ISBN: 978-3-319-26005-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics