Abstract
We propose a new parallel ensemble learning algorithm of random local support vector machines, called krSVM for the effectively non-linear classification of large datasets. The random local SVM in the krSVM learning strategy uses kmeans algorithm to partition the data into k clusters, followed which it constructs a non-linear SVM in each cluster to classify the data locally in the parallel way on multi-core computers. The krSVM algorithm is faster than the standard SVM in the non-linear classification of large datasets while maintaining the classification correctness. The numerical test results on 4 datasets from UCI repository and 3 benchmarks of handwritten letters recognition showed that our proposed algorithm is efficient compared to the standard SVM.
Similar content being viewed by others
Notes
- 1.
It must be noted that the complexity of the kSVM approach does not include the kmeans clustering used to partition the full dataset. But this step requires insignificant time compared with the quadratic programming solution.
- 2.
Two classifiers are diverse if they make different errors on new data points [18].
References
Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)
Guyon, I.: Web page on svm applications (1999). http://www.clopinet.com/isabelle/Projects/-SVM/app-list.html
MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, University of California Press 1, pp. 281–297, January 1967
Asuncion, A., Newman, D.: UCI repository of machine learning databases (2007)
LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard, W., Jackel, L.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551 (1989)
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)
van der Maaten, L.: A new benchmark dataset for handwritten character recognition (2009). http://homepage.tudelft.nl/19j49/Publications_files/characters.zip
Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge University Press, New York (2000)
Platt, J.: Fast training of support vector machines using sequential minimal optimization. In: Schölkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel Methods Support Vector Learning, pp. 185–208. MTT Press, Cambridge (1999)
Do, T.-N.: Non-linear classification of massive datasets with a parallel algorithm of local support vector machines. In: Le Thi, H.A., Nguyen, N.T., Do, T.V. (eds.) Advanced Computational Methods for Knowledge Engineering. AISC, vol. 358, pp. 231–241. Springer, Heidelberg (2015)
Wu, X., Kumar, V., Quinlan, J.R., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G.J., Ng, A., Liu, B., Yu, P.S., Zhou, Z.H., Steinbach, M., Hand, D.J., Steinberg, D.: Top 10 algorithms in data mining. Knowl. Inf. Syst. 14(1), 1–37 (2007)
Chang, C.C., Lin, C.J.: LIBSVM : a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(27), 1–27 (2011)
Vapnik, V.: Principles of risk minimization for learning theory. In: Advances in Neural Information Processing Systems 4, (NIPS Conference, Denver, Colorado, USA, December 2–5, 1991), pp. 831–838 (1991)
Bottou, L., Vapnik, V.: Local learning algorithms. Neural Comput. 4(6), 888–900 (1992)
Vapnik, V., Bottou, L.: Local algorithms for pattern recognition and dependencies estimation. Neural Comput. 5(6), 893–909 (1993)
Board, OpenMP Architecture Review: OpenMP application program interface version 3.0 (2008)
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000)
Lin, C.: A practical guide to support vector classification (2003)
Yu, H., Yang, J., Han, J.: Classifying large data sets using svms with hierarchical clusters. In: Proceedings of the ACM SIGKDD International Conference on KDD, pp. 306–315. ACM (2003)
Do, T.N., Poulet, F.: Towards high dimensional data mining with boosting of psvm and visualization tools. In: Proceedings of 6th International Conference on Entreprise Information Systems, pp. 36–41 (2004)
Boser, B., Guyon, I., Vapnik, V.: An training algorithm for optimal margin classifiers. In: Proceedings of 5th ACM Annual Workshop on Computational Learning Theoryof 5th ACM Annual Workshop on Computational Learning Theory, pp. 144–152. ACM (1992)
Osuna, E., Freund, R., Girosi, F.: An improved training algorithm for support vector machines. In: Principe, J., Gile, L., Morgan, N., Wilson, E. (eds.) Neural Networks for Signal Processing VII, pp. 276–285 (1997)
Mangasarian, O., Musicant, D.: Lagrangian support vector machines. J. Mach. Learn. Res. 1, 161–177 (2001)
Fung, G., Mangasarian, O.: Proximal support vector classifiers. In: Proceedings of the ACM SIGKDD International Conference on KDD, pp. 77–86. ACM (2001)
Mangasarian, O.: A finite newton method for classification problems. Technical report 01–11, Data Mining Institute, Computer Sciences Department, University of Wisconsin (2001)
Suykens, J., Vandewalle, J.: Least squares support vector machines classifiers. Neural Process. Lett. 9(3), 293–300 (1999)
Shalev-Shwartz, S., Singer, Y., Srebro, N.: Pegasos: primal estimated sub-gradient solver for SVM. In: Proceedings of the Twenty-Fourth International Conference Machine Learning, pp. 807–814. ACM (2007)
Bottou, L., Bousquet, O.: The tradeoffs of large scale learning. In: Platt, J., Koller, D., Singer, Y., Roweis, S. (eds.) Advances in Neural Information Processing Systems, vol. 20, pp. 161–168. NIPS Foundation (2008). http://books.nips.cc
Do, T.N., Poulet, F.: Incremental svm and visualization tools for bio-medical data mining. In: Proceedings of Workshop on Data Mining and Text Mining in Bioinformatics, pp. 14–19 (2003)
Do, T.N., Poulet, F.: Classifying one billion data with a new distributed svm algorithm. In: Proceedings of 4th IEEE International Conference on Computer Science, Research, Innovation and Vision for the Future, pp. 59–66. IEEE Press (2006)
Fung, G., Mangasarian, O.: Incremental support vector machine classification. In: Proceedings of the 2nd SIAM International Conference on Data Mining (2002)
Poulet, F., Do, T.N.: Mining very large datasets with support vector machine algorithms. In: Camp, O., Filipe, J., Hammoudi, S., Piattini, M. (eds.) Enterprise Information Systems V, pp. 177–184 (2004)
Do, T.: Parallel multiclass stochastic gradient descent algorithms for classifying million images with very-high-dimensional signatures into thousands classes. Vietnam J. Comput. Sci. 1(2), 107–115 (2014)
Do, T.-N., Nguyen, V.-H., Poulet, F.: Speed Up SVM algorithm for massive classification tasks. In: Tang, C., Ling, C.X., Zhou, X., Cercone, N.J., Li, X. (eds.) ADMA 2008. LNCS (LNAI), vol. 5139, pp. 147–157. Springer, Heidelberg (2008)
Do, T.N., Poulet, F.: Mining very large datasets with svm and visualization. In: Proceedings of 7th International Conference on Entreprise Information Systems, pp. 127–134 (2005)
Boley, D., Cao, D.: Training support vector machines using adaptive clustering. In: Berry, M.W., Dayal, U., Kamath, C., Skillicorn, D.B. (eds.) Proceedings of the Fourth SIAM International Conference on Data Mining, Lake Buena Vista, Florida, USA, April 22–24, 2004, SIAM, pp. 126–137 (2004)
Tong, S., Koller, D.: Support vector machine active learning with applications to text classification. In: Proceedings of the 17th International Conference on Machine Learning, pp. 999–1006. ACM (2000)
Pavlov, D., Mao, J., Dom, B.: Scaling-up support vector machines using boosting algorithm. In: 15th International Conference on Pattern Recognition, vol. 2, pp. 219–222 (2000)
Do, T.N., Le-Thi, H.A.: Classifying large datasets with svm. In: Proceedings of 4th International Conference on Computational Management Science (2007)
Do, T.N., Fekete, J.D.: Large scale classification with support vector machine algorithms. In: Wani, M.A., Kantardzic, M.M., Li, T., Liu, Y., Kurgan, L.A., Ye, J., Ogihara, M., Sagiroglu, S., Chen, X.-W., Peterson, L.E., Hafeez, K. (eds.) The Sixth International Conference on Machine Learning and Applications, ICMLA 2007, Cincinnati, Ohio, USA, 13–15 December 2007, pp. 7–12. IEEE Computer Society (2007)
Freund, Y., Schapire, R.: A short introduction to boosting. J. Jpn. Soc. Artif. Intell. 14(5), 771–780 (1999)
Breiman, L.: Arcing classifiers. Ann. Stat. 26(3), 801–849 (1998)
Jacobs, R.A., Jordan, M.I., Nowlan, S.J., Hinton, G.E.: Adaptive mixtures of local experts. Neural Comput. 3(1), 79–87 (1991)
Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the em algorithm. J. Roy. Stat. Soc.:Ser B 39(1), 1–38 (1977)
Vincent, P., Bengio, Y.: K-local hyperplane and convex distance nearest neighbor algorithms. In: Advances in Neural Information Processing Systems, pp. 985–992. The MIT Press (2001)
Zhang, H., Berg, A., Maire, M., Malik, J.: SVM-KNN: discriminative nearest neighbor classification for visual category recognition. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 2126–2136 (2006)
Yang, T., Kecman, V.: Adaptive local hyperplane classification. Neurocomputing 71(13–15), 3001–3004 (2008)
Segata, N., Blanzieri, E.: Fast and scalable local kernel machines. J. Mach. Learn. Res. 11, 1883–1926 (2010)
Cheng, H., Tan, P.N., Jin, R.: Efficient algorithm for localized support vector machine. IEEE Trans. Knowl. Data Eng. 22(4), 537–549 (2010)
Kecman, V., Brooks, J.: Locally linear support vector machines and other local models. In: The 2010 International Joint Conference on Neural Networks (IJCNN), pp. 1–6 (2010)
Ladicky, L., Torr, P.H.S.: Locally linear support vector machines. In: Getoor, L., Scheffer, T., (eds.) Proceedings of the 28th International Conference on Machine Learning, ICML 2011, Bellevue, Washington, USA, June 28 – July 2, 2011, pp. 985–992. Omnipress (2011)
Gu, Q., Han, J.: Clustered support vector machines. In: Proceedings of the Sixteenth International Conference on Artificial Intelligence and Statistics, AISTATS 2013, Scottsdale, AZ, USA, April 29 – May 1, 2013, JMLR Proceedings, vol. 31, pp. 307–315 (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Do, TN., Poulet, F. (2015). Random Local SVMs for Classifying Large Datasets. In: Dang, T., Wagner, R., Küng, J., Thoai, N., Takizawa, M., Neuhold, E. (eds) Future Data and Security Engineering. FDSE 2015. Lecture Notes in Computer Science(), vol 9446. Springer, Cham. https://doi.org/10.1007/978-3-319-26135-5_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-26135-5_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-26134-8
Online ISBN: 978-3-319-26135-5
eBook Packages: Computer ScienceComputer Science (R0)