Abstract
This paper presents a novel topic model for traffic speed analysis in the urban environment. Our topic model is special in that the parameters for encoding the following two domain-specific aspects of traffic speeds are introduced. First, traffic speeds are measured by the sensors each having a fixed location. Therefore, it is likely that similar measurements will be given by the sensors located close to each other. Second, traffic speeds show a 24-hour periodicity. Therefore, it is likely that similar measurements will be given at the same time point on different days. We model these two aspects with Gaussian process priors and make topic probabilities location- and time-dependent. In this manner, our model utilizes the metadata of the traffic speed data. We offer a slice sampling to achieve less approximation than variational Bayesian inferences. We present an experimental result where we use the traffic speed data provided by New York City.
Similar content being viewed by others
References
Real-Time Traffic Speed Data, NYC OpenData. https://data.cityofnewyork.us/Transportation/Real-Time-Traffic-Speed-Data/xsat-x5sa
Agovic, A., Banerjee, A.: Gaussian process topic models. In: UAI, pp. 10–19 (2010)
Andrzejewski, D., Zhu, X., Craven, M.: Incorporating domain knowledge into topic modeling via Dirichlet forest priors. ICML 382(26), 25–32 (2009)
Bigelow, J.L., Dunson, D.B.: Bayesian semiparametric joint models for functional predictors. J. Am. Stat. Assoc. 104(485), 26–36 (2009)
Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. JMLR 3, 993–1022 (2003)
Blei, D.M., Lafferty, J.D.: Correlated topic models. NIPS 18, 147–154 (2005)
Chen, Z., Mukherjee, A., Liu, B., Hsu, M., Castellanos, M., Ghosh, R.: Leveraging multi-domain prior knowledge in topic models. In: IJCAI, pp. 2071–2077 (2013)
Chen, Z., Liu, B.: Topic modeling using topics from many domains, lifelong learning and big data. In: ICML, pp. 703–711 (2014)
Eisenstein, J., Ahmed A., Xing, E.P.: Sparse additive generative models of text. In: ICML, pp. 1041–1048 (2011)
Griffiths, T.L., Steyvers, M.: Finding scientific topics. PNAS 101(Suppl 1), 5228–5235 (2004)
Hennig, P., Stern, D.H, Herbrich, R., Graepel, T.: Kernel topic models. In: AISTATS, pp. 511–519 (2012)
Masada, T., Takasu, A.: A topic model for traffic speed data analysis. In: Ali, M., Pan, J.-S., Chen, S.-M., Horng, M.-F. (eds.) IEA/AIE 2014, Part II. LNCS, vol. 8482, pp. 68–77. Springer, Heidelberg (2014)
Mimno, D., Wallach, H.M., Talley, E., Leenders, M., McCallum, A.: Optimizing semantic coherence in topic models. In: EMNLP, pp. 262–272 (2011)
Mimno, D., Wallach, H.M., McCallum, A.: Gibbs sampling for logistic normal topic models with graph-based priors. In: NIPS Workshop on Graph Mining (2008)
O’Connor, B., Stewart, B.M., Smith, N.A.: Learning to extract international relations from political context. In: ACL, pp. 1094–1104 (2013)
Paisley, J., Wang, C., Blei, D.: The discrete infinite logistic normal distribution for mixed-membership modeling. In: AISTATS, pp. 74–82 (2011)
Pan, B., Demiryurek, U., Shahabi, C.: Utilizing real-world transportation data for accurate traffic prediction. In: ICDM, pp. 595–604 (2012)
Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006)
Robert, C.P., Casella, G.: Monte Carlo Statistical Methods. Springer, New York (2004)
Salakhutdinov, R., Hinton, G.E.: Replicated softmax: an undirected topic model. NIPS 22, 1607–1614 (2009)
Scarpa, B., Dunson, D.B.: Enriched stick-breaking processes for functional data. J. Am. Stat. Assoc. 109(506), 647–660 (2014)
Srivastava, N., Salakhutdinov, R., Hinton, G.E.: Modeling documents with deep boltzmann machine. In: UAI (2013)
Xu, Z., Chen, M., Weinberger, K.Q., Sha, F.: From sBoW to dCoT: marginalized encoders for text representation. In: CIKM, pp. 1879–1884 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Masada, T., Takasu, A. (2015). Traffic Speed Data Investigation with Hierarchical Modeling. In: Dang, T., Wagner, R., Küng, J., Thoai, N., Takizawa, M., Neuhold, E. (eds) Future Data and Security Engineering. FDSE 2015. Lecture Notes in Computer Science(), vol 9446. Springer, Cham. https://doi.org/10.1007/978-3-319-26135-5_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-26135-5_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-26134-8
Online ISBN: 978-3-319-26135-5
eBook Packages: Computer ScienceComputer Science (R0)