Skip to main content

Traffic Speed Data Investigation with Hierarchical Modeling

  • Conference paper
  • First Online:
Future Data and Security Engineering (FDSE 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9446))

Included in the following conference series:

  • 855 Accesses

Abstract

This paper presents a novel topic model for traffic speed analysis in the urban environment. Our topic model is special in that the parameters for encoding the following two domain-specific aspects of traffic speeds are introduced. First, traffic speeds are measured by the sensors each having a fixed location. Therefore, it is likely that similar measurements will be given by the sensors located close to each other. Second, traffic speeds show a 24-hour periodicity. Therefore, it is likely that similar measurements will be given at the same time point on different days. We model these two aspects with Gaussian process priors and make topic probabilities location- and time-dependent. In this manner, our model utilizes the metadata of the traffic speed data. We offer a slice sampling to achieve less approximation than variational Bayesian inferences. We present an experimental result where we use the traffic speed data provided by New York City.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Real-Time Traffic Speed Data, NYC OpenData. https://data.cityofnewyork.us/Transportation/Real-Time-Traffic-Speed-Data/xsat-x5sa

  2. Agovic, A., Banerjee, A.: Gaussian process topic models. In: UAI, pp. 10–19 (2010)

    Google Scholar 

  3. Andrzejewski, D., Zhu, X., Craven, M.: Incorporating domain knowledge into topic modeling via Dirichlet forest priors. ICML 382(26), 25–32 (2009)

    Google Scholar 

  4. Bigelow, J.L., Dunson, D.B.: Bayesian semiparametric joint models for functional predictors. J. Am. Stat. Assoc. 104(485), 26–36 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. JMLR 3, 993–1022 (2003)

    MATH  Google Scholar 

  6. Blei, D.M., Lafferty, J.D.: Correlated topic models. NIPS 18, 147–154 (2005)

    Google Scholar 

  7. Chen, Z., Mukherjee, A., Liu, B., Hsu, M., Castellanos, M., Ghosh, R.: Leveraging multi-domain prior knowledge in topic models. In: IJCAI, pp. 2071–2077 (2013)

    Google Scholar 

  8. Chen, Z., Liu, B.: Topic modeling using topics from many domains, lifelong learning and big data. In: ICML, pp. 703–711 (2014)

    Google Scholar 

  9. Eisenstein, J., Ahmed A., Xing, E.P.: Sparse additive generative models of text. In: ICML, pp. 1041–1048 (2011)

    Google Scholar 

  10. Griffiths, T.L., Steyvers, M.: Finding scientific topics. PNAS 101(Suppl 1), 5228–5235 (2004)

    Article  Google Scholar 

  11. Hennig, P., Stern, D.H, Herbrich, R., Graepel, T.: Kernel topic models. In: AISTATS, pp. 511–519 (2012)

    Google Scholar 

  12. Masada, T., Takasu, A.: A topic model for traffic speed data analysis. In: Ali, M., Pan, J.-S., Chen, S.-M., Horng, M.-F. (eds.) IEA/AIE 2014, Part II. LNCS, vol. 8482, pp. 68–77. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  13. Mimno, D., Wallach, H.M., Talley, E., Leenders, M., McCallum, A.: Optimizing semantic coherence in topic models. In: EMNLP, pp. 262–272 (2011)

    Google Scholar 

  14. Mimno, D., Wallach, H.M., McCallum, A.: Gibbs sampling for logistic normal topic models with graph-based priors. In: NIPS Workshop on Graph Mining (2008)

    Google Scholar 

  15. O’Connor, B., Stewart, B.M., Smith, N.A.: Learning to extract international relations from political context. In: ACL, pp. 1094–1104 (2013)

    Google Scholar 

  16. Paisley, J., Wang, C., Blei, D.: The discrete infinite logistic normal distribution for mixed-membership modeling. In: AISTATS, pp. 74–82 (2011)

    Google Scholar 

  17. Pan, B., Demiryurek, U., Shahabi, C.: Utilizing real-world transportation data for accurate traffic prediction. In: ICDM, pp. 595–604 (2012)

    Google Scholar 

  18. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  19. Robert, C.P., Casella, G.: Monte Carlo Statistical Methods. Springer, New York (2004)

    Book  MATH  Google Scholar 

  20. Salakhutdinov, R., Hinton, G.E.: Replicated softmax: an undirected topic model. NIPS 22, 1607–1614 (2009)

    Google Scholar 

  21. Scarpa, B., Dunson, D.B.: Enriched stick-breaking processes for functional data. J. Am. Stat. Assoc. 109(506), 647–660 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Srivastava, N., Salakhutdinov, R., Hinton, G.E.: Modeling documents with deep boltzmann machine. In: UAI (2013)

    Google Scholar 

  23. Xu, Z., Chen, M., Weinberger, K.Q., Sha, F.: From sBoW to dCoT: marginalized encoders for text representation. In: CIKM, pp. 1879–1884 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomonari Masada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Masada, T., Takasu, A. (2015). Traffic Speed Data Investigation with Hierarchical Modeling. In: Dang, T., Wagner, R., Küng, J., Thoai, N., Takizawa, M., Neuhold, E. (eds) Future Data and Security Engineering. FDSE 2015. Lecture Notes in Computer Science(), vol 9446. Springer, Cham. https://doi.org/10.1007/978-3-319-26135-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26135-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26134-8

  • Online ISBN: 978-3-319-26135-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics