Abstract
Diagnostic imaging has contributed significantly to improving the accuracy, timeliness and efficiency of healthcare. Most of medical images have blur combined with noise because of many reasons. This problem will give difficulties to health professionals because each of small details is very useful for the treatment process of doctors. In this paper, we proposed a new method to improve the quality of medical images. The proposed method includes two steps: denoising by Bayesian thresholding in bandelet domain and using the Kernels set for deblurring. We undervested the proposed method by calculating the PSNR and MSE values. This method gives the result better than the other recent methods available in literature.
Similar content being viewed by others
References
Le Pennec, E., Mallat, S.: Sparse geometric image representations with bandelets. IEEE Trans. Image Process. 15, 423–438 (2005)
Mallat Cmap, S., Peyré Ceremade, G.: Orthogonal bandelet bases for geometric images approximation. Commun. Pure Appl. Math. LXI, 1173–1212 (2008)
Le Pennec, E., Mallat, S.: Bandelet image approximation and compression. SIAM J. Multiscale Simul. 4(3), 992–1039 (2005)
Binh, N.T., Tuyet, V.T.H., Vinh, P.C.: Ultrasound images denoising based context awareness in bandelet domain. In: Vinh, P.G., Alagar, V., Vassev, E., Khare, A. (eds.) ICCASA. LNICST, vol. 128, pp. 115–124. Springer, Heidelberg (2014)
Strang, G.: Wavelets and dilation equations: a brief introduction. SIAM Rev. 31(4), 614–627 (1989)
Edwards, T.: Discrete Wavelet Transforms: Theory and Implementation (1992)
Kociolek, M., Materka, A., Strzelecki, M., SzczypÃnski, P.: Discrete wavelet transform – derived features for digital image texture analysis. In: Proceedings of International Conference on Signals and Electronic Systems, pp. 163–168 (2001)
Binh, N.T., Khare, A.: Image Denoising, Deblurring and Object Tracking, A new Generation wavelet based approach. LAP LAMBERT Academic Publishing, Zurich (2013)
Do, M.N., Vetterli, M.: The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans. Image Process. 14, 2091–2106 (2005)
da Cunha, A.L., Zhou, J., Do, M.N.: Nonsubsampled contourlet transform: theory, design, and applications. IEEE Trans. Image Proc. 1, 3089–3101 (2005)
da Cunha, A.L., Zhou, J., Do, M.N.: Nonsubsampled contourlet transform: filter design and applications in denoising (2006)
Candes, J.: Ridgelets: Theory and Applications. Stanford University, Stanford (1998)
Zhang, B., Fadili, J.M., Starck, J.L.: Wavelets, ridgelets and curvelets for poisson noise removal. IEEE Trans. Image Process. 17, 1093–1108 (2008)
Donoho, D.L., Duncan, M.R.: Digital curvelet transform: strategy, implementation and experiments. In: Proceedings of SPIE, vol. 4056, pp. 12–29 (2000)
Starck, J.L., Candès, E.J., Donoho, D.L.: The curvelet transform for image denoising. IEEE Trans. Image Process. 11, 670–684 (2002)
Binh, N.T., Khare, A.: Multilevel threshold based image denoising in curvelet domain. J. Comput. Sci. Technol. 25, 632–640 (2010)
Chan, S.H., Khoshabeh, R., Gibson, K.B., Gill, P.E., Nguyen, T.Q.: An augmented Lagrangian method for total variation video restoration. IEEE Trans. Image Process. 20(11), 3097–3111 (2011)
Abramovich, F., Sapatinas, T., Silverman, B.W.: Wavelet thresholding via a Bayesian approach. J. Roy. Stat. Soc. B 60, 725–749 (1998)
Sitara, K., Remya, S.: Image deblurring in Bayesian framework using template based blur estimation. Int. J. Multimed. Appl. (IJMA) 4(1), 1–17 (2012)
Chui, M., Feng, Y., Wang, W., Li, Z., Xu, X.: Image denoising method with adaptive Bayes threshold in nonsubsampled contourlet domain. American Applied Science Research Institute (2012)
Lina, J.M., Mayrand, M.: Complex daubechies wavelets. J. Appl. Comput. Harmonic Anal. 2, 219–229 (1995)
Khare, A., Tiwary, U.S.: A new method for deblurring and denoising of medical images using complex wavelet transform. Engineering in Medicine and Biology Society, pp. 1897 –1900, IEEE (2005)
Candes, J., Demanet, L., Donoho, D.L., Ying, L.: Fast discrete curvelet transforms. Multiscale Model. Simul. 5(3), 861–899 (2006)
Khare, A., Tiwary, U.S.: Symmetric daubechies complex wavelet transform and its application to denoising and deblurring. WSEAS Trans. Signal Process. 2, 738–745 (2006)
Al-Ameen, Z., Sulong, G., Johar, M.G.M.: Fast deblurring method for computed tomography medical images using a novel kernels set. Int. J. Bio-Sci. Bio-Technol. 4(3), 9–20 (2012)
Zhang, W., Yu, F., Guo, H.: Improved adaptive wavelet threshold for image denoising. In: Control and Decision Conference, pp. 5958–5963, Chinese (2009)
Binh, N.T., Tuyet, V.T.H., Vinh, P.C.: Increasing the quality of medical images based on the combination of filters in ridgelet domain. In: Vinh, P.C., Vassev, E., Hinchey, M. (eds.) ICTCC 2014. LNICST, vol. 144, pp. 320–331. Springer, Heidelberg (2015)
Tuyet, V.T.H., Binh, N.T.: Reducing impurities in medical images based on curvelet domain. In: Vinh, P.C., Vassev, E., Hinchey, M. (eds.) ICTCC 2014. LNICST, vol. 144, pp. 306–319. Springer, Heidelberg (2015)
Xu, L., Jia, J.: Two-phase kernel estimation for robust motion deblurring. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 157–170. Springer, Heidelberg (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Appendix
Appendix
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Binh, N.T. (2015). Enhancing the Quality of Medical Image Database Based on Kernels in Bandelet Domain. In: Dang, T., Wagner, R., Küng, J., Thoai, N., Takizawa, M., Neuhold, E. (eds) Future Data and Security Engineering. FDSE 2015. Lecture Notes in Computer Science(), vol 9446. Springer, Cham. https://doi.org/10.1007/978-3-319-26135-5_17
Download citation
DOI: https://doi.org/10.1007/978-3-319-26135-5_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-26134-8
Online ISBN: 978-3-319-26135-5
eBook Packages: Computer ScienceComputer Science (R0)