Skip to main content

Enhancing the Quality of Medical Image Database Based on Kernels in Bandelet Domain

  • Conference paper
  • First Online:
Future Data and Security Engineering (FDSE 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9446))

Included in the following conference series:

Abstract

Diagnostic imaging has contributed significantly to improving the accuracy, timeliness and efficiency of healthcare. Most of medical images have blur combined with noise because of many reasons. This problem will give difficulties to health professionals because each of small details is very useful for the treatment process of doctors. In this paper, we proposed a new method to improve the quality of medical images. The proposed method includes two steps: denoising by Bayesian thresholding in bandelet domain and using the Kernels set for deblurring. We undervested the proposed method by calculating the PSNR and MSE values. This method gives the result better than the other recent methods available in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Le Pennec, E., Mallat, S.: Sparse geometric image representations with bandelets. IEEE Trans. Image Process. 15, 423–438 (2005)

    Article  MathSciNet  Google Scholar 

  2. Mallat Cmap, S., Peyré Ceremade, G.: Orthogonal bandelet bases for geometric images approximation. Commun. Pure Appl. Math. LXI, 1173–1212 (2008)

    MathSciNet  MATH  Google Scholar 

  3. Le Pennec, E., Mallat, S.: Bandelet image approximation and compression. SIAM J. Multiscale Simul. 4(3), 992–1039 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Binh, N.T., Tuyet, V.T.H., Vinh, P.C.: Ultrasound images denoising based context awareness in bandelet domain. In: Vinh, P.G., Alagar, V., Vassev, E., Khare, A. (eds.) ICCASA. LNICST, vol. 128, pp. 115–124. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  5. Strang, G.: Wavelets and dilation equations: a brief introduction. SIAM Rev. 31(4), 614–627 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Edwards, T.: Discrete Wavelet Transforms: Theory and Implementation (1992)

    Google Scholar 

  7. Kociolek, M., Materka, A., Strzelecki, M., Szczypínski, P.: Discrete wavelet transform – derived features for digital image texture analysis. In: Proceedings of International Conference on Signals and Electronic Systems, pp. 163–168 (2001)

    Google Scholar 

  8. Binh, N.T., Khare, A.: Image Denoising, Deblurring and Object Tracking, A new Generation wavelet based approach. LAP LAMBERT Academic Publishing, Zurich (2013)

    Google Scholar 

  9. Do, M.N., Vetterli, M.: The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans. Image Process. 14, 2091–2106 (2005)

    Article  Google Scholar 

  10. da Cunha, A.L., Zhou, J., Do, M.N.: Nonsubsampled contourlet transform: theory, design, and applications. IEEE Trans. Image Proc. 1, 3089–3101 (2005)

    Google Scholar 

  11. da Cunha, A.L., Zhou, J., Do, M.N.: Nonsubsampled contourlet transform: filter design and applications in denoising (2006)

    Google Scholar 

  12. Candes, J.: Ridgelets: Theory and Applications. Stanford University, Stanford (1998)

    Google Scholar 

  13. Zhang, B., Fadili, J.M., Starck, J.L.: Wavelets, ridgelets and curvelets for poisson noise removal. IEEE Trans. Image Process. 17, 1093–1108 (2008)

    Article  MathSciNet  Google Scholar 

  14. Donoho, D.L., Duncan, M.R.: Digital curvelet transform: strategy, implementation and experiments. In: Proceedings of SPIE, vol. 4056, pp. 12–29 (2000)

    Google Scholar 

  15. Starck, J.L., Candès, E.J., Donoho, D.L.: The curvelet transform for image denoising. IEEE Trans. Image Process. 11, 670–684 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Binh, N.T., Khare, A.: Multilevel threshold based image denoising in curvelet domain. J. Comput. Sci. Technol. 25, 632–640 (2010)

    Article  Google Scholar 

  17. Chan, S.H., Khoshabeh, R., Gibson, K.B., Gill, P.E., Nguyen, T.Q.: An augmented Lagrangian method for total variation video restoration. IEEE Trans. Image Process. 20(11), 3097–3111 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Abramovich, F., Sapatinas, T., Silverman, B.W.: Wavelet thresholding via a Bayesian approach. J. Roy. Stat. Soc. B 60, 725–749 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sitara, K., Remya, S.: Image deblurring in Bayesian framework using template based blur estimation. Int. J. Multimed. Appl. (IJMA) 4(1), 1–17 (2012)

    Google Scholar 

  20. Chui, M., Feng, Y., Wang, W., Li, Z., Xu, X.: Image denoising method with adaptive Bayes threshold in nonsubsampled contourlet domain. American Applied Science Research Institute (2012)

    Google Scholar 

  21. Lina, J.M., Mayrand, M.: Complex daubechies wavelets. J. Appl. Comput. Harmonic Anal. 2, 219–229 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  22. Khare, A., Tiwary, U.S.: A new method for deblurring and denoising of medical images using complex wavelet transform. Engineering in Medicine and Biology Society, pp. 1897 –1900, IEEE (2005)

    Google Scholar 

  23. Candes, J., Demanet, L., Donoho, D.L., Ying, L.: Fast discrete curvelet transforms. Multiscale Model. Simul. 5(3), 861–899 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Khare, A., Tiwary, U.S.: Symmetric daubechies complex wavelet transform and its application to denoising and deblurring. WSEAS Trans. Signal Process. 2, 738–745 (2006)

    Google Scholar 

  25. Al-Ameen, Z., Sulong, G., Johar, M.G.M.: Fast deblurring method for computed tomography medical images using a novel kernels set. Int. J. Bio-Sci. Bio-Technol. 4(3), 9–20 (2012)

    Google Scholar 

  26. Zhang, W., Yu, F., Guo, H.: Improved adaptive wavelet threshold for image denoising. In: Control and Decision Conference, pp. 5958–5963, Chinese (2009)

    Google Scholar 

  27. Binh, N.T., Tuyet, V.T.H., Vinh, P.C.: Increasing the quality of medical images based on the combination of filters in ridgelet domain. In: Vinh, P.C., Vassev, E., Hinchey, M. (eds.) ICTCC 2014. LNICST, vol. 144, pp. 320–331. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  28. Tuyet, V.T.H., Binh, N.T.: Reducing impurities in medical images based on curvelet domain. In: Vinh, P.C., Vassev, E., Hinchey, M. (eds.) ICTCC 2014. LNICST, vol. 144, pp. 306–319. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  29. Xu, L., Jia, J.: Two-phase kernel estimation for robust motion deblurring. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 157–170. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Thanh Binh .

Editor information

Editors and Affiliations

Appendix

Appendix

See Tables A1, A2, A3, A4.

Table A1. PSNR values (dB) of different denoised and deblured images with Gaussian blur combined with Gaussian noise.
Table A2. PSNR values (dB) of different denoised and deblured images with motion blur combined with Gaussian noise.
Table A3. MSE values of different denoised and deblured images with Gaussian blur combined with Gaussian noise.
Table A4. MSE values of different denoised and deblured images with motion blur combined with Gaussian noise.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Binh, N.T. (2015). Enhancing the Quality of Medical Image Database Based on Kernels in Bandelet Domain. In: Dang, T., Wagner, R., Küng, J., Thoai, N., Takizawa, M., Neuhold, E. (eds) Future Data and Security Engineering. FDSE 2015. Lecture Notes in Computer Science(), vol 9446. Springer, Cham. https://doi.org/10.1007/978-3-319-26135-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26135-5_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26134-8

  • Online ISBN: 978-3-319-26135-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics