Abstract
This paper is meant as a short survey on analytically defined digital geometric objects. We will start by giving some elements on digitizations and their relations to continuous geometry. We will then explain how, from simple assumptions about properties a digital object should have, one can build mathematically sound digital objects. We will end with open problems and challenges for the future.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Andres, E., Acharya, R., Sibata, C.: Discrete analytical hyperplanes. GMIP 59(5), 302–309 (1997)
Andres, E., Jacob, M.A.: The discrete analytical hyperspheres. IEEE Trans. Vis. Comp. Graphics 3(1), 75–86 (1997)
Andres, E., Nehlig, P., Françon, J.: Supercover of straight lines, planes and triangles. In: Ahronovitz, E., Fiorio, C. (eds.) DGCI 1997. LNCS, vol. 1347. Springer, Heidelberg (1997)
Andres, E., Nehlig, P., Francon, J.: Tunnel-free supercover 3D polygons and polyhedra. In: Eurographics 1997. Computer Graphics Forum, vol. 16, pp. C3–C13 (1997)
Andrès, É.: Defining discrete objects for polygonalization: the standard model. In: Braquelaire, A., Lachaud, J.-O., Vialard, A. (eds.) DGCI 2002. LNCS, vol. 2301, pp. 313–325. Springer, Heidelberg (2002)
Andres, E.: Discrete linear objects in dimension n: the standard model. Graph. Models 65(1–3), 92–111 (2003)
Andres, E.: The supercover of an m-flat is a discrete analytical object. Theor. Comput. Sci. 406(1–2), 8–14 (2008)
Andres, E., Largeteau-Skapin, G., Rodríguez, M.: Generalized perpendicular bisector and exhaustive discrete circle recognition. Graph. Models 73(6), 354–364 (2011)
Andres, E., Roussillon, T.: Analytical description of digital circles. In: Debled-Rennesson, I., Domenjoud, E., Kerautret, B., Even, P. (eds.) DGCI 2011. LNCS, vol. 6607, pp. 235–246. Springer, Heidelberg (2011)
Berthé, V., Jamet, D., Jolivet, T., Provençal, X.: Critical connectedness of thin arithmetical discrete planes. In: Gonzalez-Diaz, R., Jimenez, M.-J., Medrano, B. (eds.) DGCI 2013. LNCS, vol. 7749, pp. 107–118. Springer, Heidelberg (2013)
Berthé, V., Labbé, S.: An arithmetic and combinatorial approach to three-dimensional discrete lines. In: Debled-Rennesson, I., Domenjoud, E., Kerautret, B., Even, P. (eds.) DGCI 2011. LNCS, vol. 6607, pp. 47–58. Springer, Heidelberg (2011)
Bresenham, J.: Algorithm for computer control of a digital plotter. IBM Syst. J. 4(1), 25–30 (1965)
Bresenham, J.: A linear algorithm for incremental digital display of circular arcs. Commun. ACM 20(2), 100–106 (1977)
Brimkov, V.E., Andres, E., Barneva, R.P.: Object discretizations in higher dimensions. Pattern Recogn. Lett. 23(6), 623–636 (2002)
Brimkov, V.E., Barneva, R.P.: Graceful planes and thin tunnel-free meshes. In: Bertrand, G., Couprie, M., Perroton, L. (eds.) DGCI 1999. LNCS, vol. 1568, pp. 53–64. Springer, Heidelberg (1999)
Brimkov, V.E., Barneva, R.P.: Graceful planes and lines. Theor. Comput. Sci. 283(1), 151–170 (2002)
Brimkov, V.E., Barneva, R.P.: Connectivity of discrete planes. Theor. Comput. Sci. 319(1–3), 203–227 (2004)
Brimkov, V.E., Coeurjolly, D., Klette, R.: Digital planarity - a review. Discrete Appl. Math. 155(4), 468–495 (2007)
Brons, R.: Linguistic methods for the description of a straight line on a grid. CGIP 3(1), 48–62 (1974)
Chassery, J.M., Montanvert, A.: Géométrie discrète en imagerie. Ed. Hermès, Paris (1987)
Chollet, A., Wallet, G., Fuchs, L., Largeteau-Skapin, G., Andres, E.: Insight in discrete geometry and computational content of a discrete model of the continuum. Pattern Recogn. 42(10), 2220–2228 (2009)
Jordan, C.: Remarques sur les intégrales définies. Journal de Mathématiques, 4ème série, T.8, pp. 69–99 (1892)
Coeurjolly, D., Blot, V., Jacob-Da Col, M.-A.: Quasi-Affine transformation in 3-D: theory and algorithms. In: Wiederhold, P., Barneva, R.P. (eds.) IWCIA 2009. LNCS, vol. 5852, pp. 68–81. Springer, Heidelberg (2009)
Cohen-Or, D., Kaufman, A.E.: Fundamentals of surface voxelization. CVGIP 57(6), 453–461 (1995)
Coven, E.M., Hedlund, G.: Sequences with minimal block growth. Math. Syst. Theory 7(2), 138–153 (1973)
Dachille, F., Kaufman, A.E.: Incremental triangle voxelization. In: Proceeding Graphics Interface, pp. 205–212. Canadian Human-Computer Communications Society, Montréal (2000)
Debled-Renesson, I., Reveillès, J.P.: A new approach to digital planes. In: SPIE Vision Geometry III, vol. 2356, Boston (1994)
Debled-Rennesson, I.: Etude et reconnaissance des droites et plans discrets, PhD Thesis. Ph.D. thesis, Université Louis Pasteur, Strasbourg, France (1995)
Debled-Rennesson, I., Remy, J., Rouyer-Degli, J.: Segmentation of discrete curves into fuzzy segments. Elect. Notes Discrete Math. 12, 372–383 (2003)
Feschet, F., Reveillès, J.-P.: A generic approach for n-dimensional digital lines. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 29–40. Springer, Heidelberg (2006)
Figueiredo, O., Reveillès, J.: A contribution to 3D digital lines. In: 5th DGCI, pp. 187–198, Clermont-Ferrand (1995)
Fiorio, C., Jamet, D., Toutant, J.L.: Discrete circles: an arithmetical approach with non-constant thickness. In: Proceeding SPIE Vision Geometry XIV, vol. 6066, pp. 1–12 (2006)
Francon, J.: Arithmetic planes and combinatorial manifolds. In: 5th DGCI, pp. 209–217, Clermont-Ferrand (1995)
Francon, J.: Discrete combinatorial surfaces. CVGIP 57(1), 20–26 (1995)
Francon, J.: Sur la topologie d’un plan arithmétique. Theor. Comput. Sci. 156(1&2), 159–176 (1996)
Gérard, Y., Provot, L., Feschet, F.: Introduction to digital level layers. In: Debled-Rennesson, I., Domenjoud, E., Kerautret, B., Even, P. (eds.) DGCI 2011. LNCS, vol. 6607, pp. 83–94. Springer, Heidelberg (2011)
Heijmans, H.J.A.M.: Morphological image operators. Academy Press, Boston (1994)
Herman, G.T.: Discrete multidimensional jordan surfaces. CVGIP 54(6), 507–515 (1992)
Jamet, D., Toutant, J.: Minimal arithmetic thickness connecting discrete planes. Discrete Appl. Math. 157(3), 500–509 (2009)
Kaufman, A.E.: Efficient algorithms for 3D scan-conversion of parametric curves, surfaces, and volumes. In: Proceeding 14th SIGGRAPH, pp. 171–179 (1987)
Kaufman, A.E.: Efficient algorithms for scan-converting 3D polygons. Comput. Graph. 12(2), 213–219 (1988)
Kim, C.E.: Three-dimensional digital line segments. IEEE Trans. PAMI 5(2), 231–234 (1983)
Klette, R., Rosenfeld, A.: Digital straightness - a review. Discrete Appl. Math. 139(1–3), 197–230 (2004)
Kong, T.Y., Rosenfeld, A.: Digital topology: introduction and survey. CVGIP 48(3), 357–393 (1989)
Kovalesky, V.: Finite topology and image analysis. Adv. Electron. Electron Phys. 84, 197–259 (1992)
Lincke, C., Wüthrich, C.A.: Surface digitizations by dilations which are tunnel-free. Discrete Appl. Math. 125(1), 81–91 (2003)
McIlroy, M.D.: Best approximate circles on integer grids. ACM Trans. Graph. 2(4), 237–263 (1983)
McIlroy, M.D.: Getting raster ellipses right. ACM Trans. Graph. 11(3), 259–275 (1992)
Montanari, U.: On limit properties in digitization schemes. J. ACM 17(2), 348–360 (1970)
Mora, F., Ruillet, G., Andres, E., Vauzelle, R.: Pedagogic discrete visualization of electromagnetic waves. In: Eurographics 2003, Interactive Demos and Posters, pp. 123–126 (2003)
Morgenthaler, D.G., Rosenfeld, A.: Surfaces in three-dimensional digital images. Inf. Control 51(3), 227–247 (1981)
Reveillès, J.P.: Calcul en Nombres Entiers et Algorithmique. Ph.D. thesis, Université Louis Pasteur, Strasbourg, France (1991)
Reveillès, J., Richard, D.: Back and forth between continuous and discrete for the working computer scientist. Ann. Math. Artif. Intell. 16, 89–152 (1996)
Ronse, C., Tajine, M.: Hausdorff discretization for cellular distances and its relation to cover and supercover discretizations. J. Vis. Commun. Image Represent. 12(2), 169–200 (2001)
Rosenfeld, A.: Digital topology. Amer. Math. Monthly 86, 621–630 (1979)
Rosenfeld, A., Kong, T.Y., Wu, A.Y.: Digital surfaces. GMIP 53(4), 305–312 (1991)
Sankar, P.: Grid intersect quantization schemes for solid object digitization. Comput. Graphics Image Process. 8(1), 25–42 (1978)
Sekiya, F., Sugimoto, A.: On connectivity of discretized 2D explicit curve. In: Mathematical Progress in Expressive Image Synthesis, Symposium MEIS 2014, pp. 16–25, Japan (2014)
Stelldinger, P., Terzic, K.: Digitization of non-regular shapes in arbitrary dimensions. Image Vision Comput. 26(10), 1338–1346 (2008)
Tajine, M., Ronse, C.: Topological properties of hausdorff discretization, and comparison to other discretization schemes. Theor. Comput. Sci. 283(1), 243–268 (2002)
Taubin, G.: Rasterizing algebraic curves and surfaces. IEEE Comput. Graphics 14(2), 14–22 (1994)
Toutant, J.-L., Andres, E., Largeteau-Skapin, G., Zrour, R.: Implicit digital surfaces in arbitrary dimensions. In: Barcucci, E., Frosini, A., Rinaldi, S. (eds.) DGCI 2014. LNCS, vol. 8668, pp. 332–343. Springer, Heidelberg (2014)
Toutant, J., Andres, E., Roussillon, T.: Digital circles, spheres and hyperspheres: from morphological models to analytical characterizations and topological properties. Discrete Appl. Math. 161(16–17), 2662–2677 (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Andres, E. (2015). Digital Analytical Geometry: How Do I Define a Digital Analytical Object?. In: Barneva, R., Bhattacharya, B., Brimkov, V. (eds) Combinatorial Image Analysis. IWCIA 2015. Lecture Notes in Computer Science(), vol 9448. Springer, Cham. https://doi.org/10.1007/978-3-319-26145-4_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-26145-4_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-26144-7
Online ISBN: 978-3-319-26145-4
eBook Packages: Computer ScienceComputer Science (R0)