Abstract
For any positive integer M, M-object fuzzy connectedness (FC) segmentation is a methodology for finding M objects in a digital image based on user-specified seed points and user-specified functions, called (fuzzy) affinities, which map each pair of image points to a value in the real interval [0, 1]. FC segmentation has been used with considerable success on biomedical and other images. We provide a brief presentation of the literature on the topic of FC segmentation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Badura, P., Pietka, E.: Soft computing approach to 3D lung nodule segmentation in CT. Comput. Biol. Med. 53, 230–243 (2014)
Bejar, H.H.C., Miranda, P.A.V.: Oriented relative fuzzy connectedness: theory, algorithms, and applications in image segmentation. In: 27th SIBGRAPI Conference on Graphics, Patterns and Images, pp. 304–311. IEEE Computer Society, Washington, DC (2014)
Carvalho, B.M., Garduño, E., Santos, I.O.: Skew divergence-based fuzzy segmentation of rock samples. J. Phys. Conf. Ser. 490, 012010 (2014)
Carvalho, B.M., Gau, C.J., Herman, G.T., Kong, T.Y.: Algorithms for fuzzy segmentation. Pattern Anal. Appl. 2, 73–81 (1999)
Carvalho, B.M., Herman, G.T., Kong, T.Y.: Simultaneous fuzzy segmentation of multiple objects. Electron. Notes Discrete Math. 12, 3–22 (2003)
Carvalho, B.M., Herman, G.T., Kong, T.Y.: Simultaneous fuzzy segmentation of multiple objects. Discrete Appl. Math. 151, 55–77 (2005)
Carvalho, B.M., Souza, T.S., Garduño, E.: Texture fuzzy segmentation using adaptive affinity functions. In: 27th ACM Symposium on Applied Computing, pp. 51–53. ACM, New York (2012)
Chen, L.: 3-D fuzzy digital topology and its application. Geophys. Prospect. Petrol. 24(2), 86–89 (1985). [In Chinese]
Chen, L.: The \(\lambda \)-connected segmentation algorithm and the optimal algorithm for split-and-merge segmentation. Chin. J. Comput. 14, 321–331 (1991). [In Chinese]
Chen, L., Berkey, F.T., Johnson, S.A.: Application of a fuzzy object search technique to geophysical data processing. In: SPIE 2180, Nonlinear Image Processing V, pp. 300–309. SPIE, Bellingham, WA (1994)
Chen, L., Cheng, H., Zhang, J.: Fuzzy subfiber and its application to seismic lithology classification. Inform. Sci. Appl. 1, 77–95 (1994)
Ciesielski, K.C., Herman, G.T., Kong, T.Y.: General theory of fuzzy connectedness segmentations. http://math.wvu.edu/~kcies/publications.html (Submitted)
Ciesielski, K.C., Miranda, P.A.V., Falcão, A.X., Udupa, J.K.: Joint graph cut and relative fuzzy connectedness image segmentation algorithm. Med. Image Anal. 17, 1046–1057 (2013)
Ciesielski, K.C., Udupa, J.K.: Affinity functions in fuzzy connectedness based image segmentation I: equivalence of affinities. Comput. Vis. Image Und. 114, 146–154 (2010)
Ciesielski, K.C., Udupa, J.K.: Affinity functions in fuzzy connectedness based image segmentation II: defining and recognizing truly novel affinities. Comput. Vis. Image Und. 114, 155–166 (2010)
Ciesielski, K.C., Udupa, J.K.: Region-based segmentation: fuzzy connectedness, graph cut, and other related algorithms. In: Deserno, T.M. (ed.) Biomedical Image Processing, pp. 251–278. Springer, Berlin (2011)
Ciesielski, K.C., Udupa, J.K., Falcão, A.X., Miranda, P.A.V.: Fuzzy connectedness image segmentation in graph cut formulation: a linear-time algorithm and a comparative analysis. J. Math. Imaging Vis. 44, 375–398 (2012)
Ciesielski, K.C., Udupa, J.K., Saha, P.K., Zhuge, Y.: Iterative relative fuzzy connectedness for multiple objects, allowing multiple seeds. Comput. Vis. Image Und. 107, 160–182 (2007)
Deserno, T.M. (ed.): Biomedical Image Processing. Springer, Berlin (2011)
Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959)
Falcão, A.X., Stolfi, J., Lotufo, R.A.: The image foresting transform: theory, algorithms, and applications. IEEE Trans. Pattern Anal. 26, 19–29 (2004)
Garduño, E., Herman, G.T.: Parallel fuzzy segmentation of multiple objects. Int. J. Imag. Syst. Tech. 18, 336–344 (2009)
Garduño, E., Wong-Barnum, M., Volkmann, N., Ellisman, M.H.: Segmentation of electron tomographic data sets using fuzzy set theory principles. J. Struct. Biol. 162, 368–379 (2008)
Gulyás, G., Dombi, J.: Computing equivalent affinity classes in a fuzzy connectedness framework. Acta Cybernetica 21, 609–628 (2014)
Herman, G.T., Carvalho, B.M.: Multiseeded segmentation using fuzzy connectedness. IEEE Trans. Pattern Anal. 23, 460–474 (2001)
Palágyi, K., Tschirren, J., Hoffman, E.A., Sonka, M.: Quantitative analysis of pulmonary airway tree structures. Comput. Biol. Med. 36, 974–996 (2006)
Saha, P.K., Udupa, J.K.: Iterative relative fuzzy connectedness and object definition: theory, algorithms, and applications in image segmentation. In: IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA 2000), pp. 28–35. IEEE Computer Society, Washington, DC (2000)
Saha, P.K., Udupa, J.K.: Relative fuzzy connectedness among multiple objects: theory, algorithms, and applications in image segmentation. Comput. Vis. Image Und. 82, 42–56 (2001)
Siebra, H., Carvalho, B.M., Garduño, E.: Fuzzy clustering of color textures using skew divergence and compact histograms: segmenting thin rock sections. J. Phys. Conf. Ser. 574, 012116 (2015)
Tschirren, J., Hoffman, E.A., Mclennan, G., Sonka, M.: Intrathoracic airway trees: segmentation and airway morphology analysis from low-dose CT scans. IEEE Trans. Med. Imaging 24, 1529–1539 (2005)
Udupa, J.K., Saha, P.K., Lotufo, R.A.: Relative fuzzy connectedness and object definition: theory, algorithms, and applications in image segmentation. IEEE Trans. Pattern Anal. 24, 1485–1500 (2002)
Udupa, J.K., Samarasekera, S.: Fuzzy connectedness and object definition: theory, algorithms, and applications in image segmentation. Graph. Model. Im. Proc. 58, 246–261 (1996)
Zhuge, Y., Udupa, J.K., Saha, P.K.: Vectorial scale-based fuzzy connected image segmentation. Comput. Vis. Image Und. 101, 177–193 (2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Herman, G.T., Kong, T.Y., Ciesielski, K.C. (2015). Fuzzy Connectedness Segmentation: A Brief Presentation of the Literature. In: Barneva, R., Bhattacharya, B., Brimkov, V. (eds) Combinatorial Image Analysis. IWCIA 2015. Lecture Notes in Computer Science(), vol 9448. Springer, Cham. https://doi.org/10.1007/978-3-319-26145-4_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-26145-4_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-26144-7
Online ISBN: 978-3-319-26145-4
eBook Packages: Computer ScienceComputer Science (R0)