Abstract
In this paper, we present an integer programming approach to estimating a discrete bi-colored image from its two-color horizontal and vertical projections. The two-color projections basically refer to the number of pixels per column having colors \(c_1\) and \(c_2\), and likewise for each row as well. The aim of the integer programming approach is to minimize the number of conflict pixels, i.e. the number of pixels that have color \(c_1\) as well as \(c_2\). Since the problem is NP-complete, we give a survey of the literature and we propose a new integer programming formulation of this problem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Barcucci, E., Del Lungo, A., Nivat, M., Pinzani, R.: The reconstruction of polyominoes from their orthogonal projections. Theor. Comput. Sci. 155, 321–347 (1996)
Barcucci, E., Brocchi, S.: Solving multicolor discrete tomography problems by using prior knowledge. Fundamenta Informaticae 125, 1–16 (2013)
Barcucci, E., Brocchi, S., Frosini, A.: Solving the two color problem: an heuristic algorithm. In: Aggarwal, J.K., Barneva, R.P., Brimkov, V.E., Koroutchev, K.N., Korutcheva, E.R. (eds.) IWCIA 2011. LNCS, vol. 6636, pp. 298–310. Springer, Heidelberg (2011)
Brocchi, S.: The three color problem solver (2014). http://www.researchandtechnology.net/discretetomography/3colorproblem/3colorsolver.html
Billionnet, A., Jarray, F., Tlig, G., Zagrouba, E.: Reconstructing convex matrices by integer programming approaches. J. Math. Model. Algor. 12, 329–343 (2013)
Brocchi, S., Frosini, A., Rinaldi, S.: A reconstruction algorithm for a subclass of instances of the 2-color problem. Theor. Comput. Sci. 412, 4795–4804 (2011)
Costa, M.C., Jarray, F., Picouleau, C.: An acyclic days-off scheduling problem. 4’OR: Q. J. Oper. Res. 4(1), 73–85 (2006)
Costa, M.C., de Werra, D., Picouleau, C., Schindl, D.: A solvable case of image reconstruction in discrete tomography. Discrete Appl. Math. 148, 240–245 (2005)
Costa, M.C., Jarray, F., Picouleau, C.: Reconstruction of binary matrices under adjacency constraints. Electron. Notes Discrete Math. 20, 281–297 (2005)
Costa, M.C., de Werra, D., Picouleau, C.: Using graphs for some discrete tomography problems. Discrete Appl. Math. 154, 35–46 (2006)
Chrobak, M., Dürr, C.: Reconstructing hv-convex polyominoes from orthogonal projection. Inf. Process. Lett. 69, 283–289 (1999)
Dahl, G., Fatberg, T.: Optimization and reconstruction of hv-convex (0,1)-matrices. Electron. Notes Discrete Math. 12, 58–69 (2003)
Del Lungo, A., Frosini, A., Nivat, M., Vuillon, L.: Discrete tomography: reconstruction under periodicity constraints. In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales, R., Conejo, R., Hennessy, M. (eds.) CALP 2002. LNCS, vol. 2380, pp. 38–56. Springer, Heidelberg (2002)
Dürr, C., Guiñez, F., Matamala, M.: Reconstructing 3-colored grids from horizontal and vertical projections Is NP-hard. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 776–787. Springer, Heidelberg (2009)
Gale, D.: A theorem on flows in networks. Pac. J. Math. 7(2), 1073–1082 (1957)
Herman, G.T., Kuba, A.: Discrete Tomography: Foundations. Algorithms and Applications. Birkhäuser, Boston (1999)
Herman, G.T., Kuba, A.: Advances in Discrete Tomography and Its Applications. Birkhäuser, Boston (2007)
Jarray, F.: A 4-day or a 3-day workweeks scheduling problem with a given workforce size. APJOR: Asian-Pac. J. Oper. Res. 26(5), 1–12 (2009)
Jarray, F.: A Lagrangian approach to reconstruct bicolored images from discrete orthogonal projections. Pure Math. Appl. 20, 17–25 (2009)
Jarray, F., Tlig, G.: Approximating bicolored images from discrete projections. In: Aggarwal, J.K., Barneva, R.P., Brimkov, V.E., Koroutchev, K.N., Korutcheva, E.R. (eds.) IWCIA 2011. LNCS, vol. 6636, pp. 311–320. Springer, Heidelberg (2011)
Picouleau, C., Brunetti, S., Frosini, A.: Reconstructing a binary matrix under timetabling constraints. Electron. Notes Discrete Math. 20, 99–112 (2005)
Ryser, H.R.: Combinatorial properties of matrices of zeros and ones. Canad. J. Math. 9, 371–377 (1957)
Woeginger, G.J.: The reconstruction of polyominoes from their orthogonal projections. Inf. Process. Lett. 77, 225–229 (2001)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Billionnet, A., Jarray, F., Tlig, G., Zagrouba, E. (2015). Reconstruction of Bicolored Images. In: Barneva, R., Bhattacharya, B., Brimkov, V. (eds) Combinatorial Image Analysis. IWCIA 2015. Lecture Notes in Computer Science(), vol 9448. Springer, Cham. https://doi.org/10.1007/978-3-319-26145-4_20
Download citation
DOI: https://doi.org/10.1007/978-3-319-26145-4_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-26144-7
Online ISBN: 978-3-319-26145-4
eBook Packages: Computer ScienceComputer Science (R0)