Skip to main content

Parallel Strip Segment Recognition and Application to Metallic Tubular Object Measure

  • Conference paper
  • First Online:
Combinatorial Image Analysis (IWCIA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9448))

Included in the following conference series:

  • 1082 Accesses

Abstract

The segmentation or the geometric analysis of specular object is known as a difficult problem in the computer vision domain. It is also true for the problem of line detection where the specular reflection implies numerous false positive line detection or missing lines located on the dark parts of the object. This limitation reduces its potential use for concrete industrial applications where metallic objects are frequent. In this work, we propose to overcome this limitation by proposing a new strategy which is not based on the image gradient as usually, but exploits the image intensity profile defined inside a parallel strip primitive. Associated to a digital straight segment recognition algorithm robust to noise, we demonstrate the efficiency of our proposed method with a real industrial application.

N. Aubry—This work was supported by the French National Agence of Research and Technology (ANRT).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. DGtal: Digital Geometry tools and algorithms library. http://libdgtal.org

  2. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)

    Article  Google Scholar 

  3. Akinlar, C., Topal, C.: EDLines: a real-time line segment detector with a false detection control. Pattern Recogn. Lett. 32(13), 1633–1642 (2011). http://ceng.anadolu.edu.tr/CV/EDLines/demo.aspx

    Article  Google Scholar 

  4. Alvarez, L., Baumela, L., Márquez-Neila, P., Henríquez, P.: A real time morphological snakes algorithm. Image Process. Line 2, 1–7 (2012)

    Article  Google Scholar 

  5. Bhowmick, P., Bhattacharya, B.B.: Fast polygonal approximation of digital curves using relaxed straightness properties. IEEE Trans. Pattern Anal. Mach. Intell. 29(9), 1590–1602 (2007)

    Article  Google Scholar 

  6. Buzer, L.: A simple algorithm for digital line recognition in the general case. Pattern Recogn. 40(6), 1675–1684 (2007)

    Article  MATH  Google Scholar 

  7. Chang, J., Raskar, R., Agrawal, A.: 3D pose estimation and segmentation using specular cues. In: CVPR 2009, pp. 1706–1713 (2009)

    Google Scholar 

  8. Couprie, C., Grady, L., Najman, L., Talbot, H.: Power watersheds: a new image segmentation framework extending graph cuts, random walker and optimal spanning forest. In: IEEE 12th International Conference on Computer Vision, pp. 731–738. IEEE (2009)

    Google Scholar 

  9. Cousty, J., Najman, L.: Incremental algorithm for hierarchical minimum spanning forests and saliency of watershed cuts. In: Soille, P., Pesaresi, M., Ouzounis, G.K. (eds.) ISMM 2011. LNCS, vol. 6671, pp. 272–283. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  10. Cousty, J., Najman, L., Perret, B.: Constructive links between some morphological hierarchies on edge-weighted graphs. In: Hendriks, C.L.L., Borgefors, G., Strand, R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 86–97. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  11. Debled-Rennesson, I., Feschet, F., Rouyer-Degli, J.: Optimal blurred segments decomposition of noisy shapes in linear times. Comput. Graphics 30, 30–36 (2006)

    Article  Google Scholar 

  12. Durou, J.D., Falcone, M., Sagona, M.: Numerical methods for shape-from-shading: a new survey with benchmarks. Comput. Vis. Image Underst. 109(1), 22–43 (2008)

    Article  Google Scholar 

  13. Even, P., Malavaud, A.: Semi-automated edge segment specification for an interactive modelling system of robot environments. Int. Arch. Photogramm. Remote Sens. 33(B5), 222–229 (2000)

    Google Scholar 

  14. Getreuer, P.: Chan-Vese segmentation. Image Process. Line 2, 214–224 (2012)

    Article  Google Scholar 

  15. Grompone von Gioi, R., Jakubowicz, J., Morel, J.M., Randall, G.: LSD: a line segment detector. Image Process. Line 2, 35–55 (2012)

    Article  Google Scholar 

  16. Haldo, S., Juan, C.: A review of classic edge detectors. Image Process. Line 5, 90–123 (2015). doi:10.5201/ipol.2015.35

    Article  Google Scholar 

  17. Kerautret, B., Lachaud, J.O.: Curvature estimation along noisy digital contours by approximate global optimization. Pattern Recogn. 42(10), 2265–2278 (2009)

    Article  MATH  Google Scholar 

  18. Kerautret, B., Even, P.: Blurred segments in gray level images for interactive line extraction. In: Wiederhold, P., Barneva, R.P. (eds.) IWCIA 2009. LNCS, vol. 5852, pp. 176–186. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  19. Naegel, B., Passat, N.: Interactive segmentation based on component-trees. Image Process. Line 4, 89–97 (2014)

    Article  Google Scholar 

  20. Nguyen, T.P., Debled-Rennesson, I.: A discrete geometry approach for dominant point detection. Pattern Recogn. 44(1), 32–44 (2011)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bertrand Kerautret .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Aubry, N., Kerautret, B., Debled-Rennesson, I., Even, P. (2015). Parallel Strip Segment Recognition and Application to Metallic Tubular Object Measure. In: Barneva, R., Bhattacharya, B., Brimkov, V. (eds) Combinatorial Image Analysis. IWCIA 2015. Lecture Notes in Computer Science(), vol 9448. Springer, Cham. https://doi.org/10.1007/978-3-319-26145-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26145-4_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26144-7

  • Online ISBN: 978-3-319-26145-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics