Abstract
This paper proposes to improve the approach presented in Krähenbühl et al. [11] to build automatic methods for the wood knot detection from X-Ray CT scanner images. The major drawbacks of the previous method mostly depends on the variety of the distribution of knots and their geometric shapes. Our aim is to extend the robustness by performing the accumulation process of Z-Motion differently and by suppressing the whorl distribution constraint. This is achieved both through a polar Z-Motion accumulation and an aggregation process of connected components related to maxima localization in the accumulation space. The experimental results are in favor of an increase in the robustness while being more sensitive to small and isolated knots. This opens the way to a method fully independent of wood species.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
DGtal: Digital Geometry tools and algorithms library. http://libdgtal.org
Aguilera, C., Sanchez, R., Baradit, E.: Detection of knots using x-ray tomographies and deformable contours with simulated annealing. Wood Res. 53, 57–66 (2008)
Baño, V., Arriaga, F., Guaita, M.: Determination of the influence of size and position of knots on load capacity and stress distribution in timber beams of pinus sylvestris using finite element model. Biosyst. Eng. 114(3), 214–222 (2013)
Boukadida, H., Longuetaud, F., Colin, F., Freyburger, C., Constant, T., Leban, J.M., Mothe, F.: Pithextract: a robust algorithm for pith detection in computer tomography images of wood - application to 125 logs from 17 tree species. Comput. Electron. Agric. 85, 90–98 (2012)
Funck, J., Zhong, Y., Butler, D., Brunner, C., Forrer, J.: Image segmentation algorithms applied to wood defect detection. Comput. Electron. Agric. 41(1–3), 157–179 (2003). developments in Image Processing and Scanning of Wood
Johansson, E., Johansson, D., Skog, J., Fredriksson, M.: Automated knot detection for high speed computed tomography on pinus sylvestris l. and picea abies (l.) karst. using ellipse fitting in concentric surfaces. Comput. Electron. Agric. 96, 238–245 (2013)
Kerautret, B.: Knot detection from accumulation map by polar scan: Online demonstration (2015). http://ipol-geometry.loria.fr/kerautre/ipol_demo/KnotDetectIPOLDemo/
Krähenbühl, A.: TKDetection (2012). https://github.com/akrah/TKDetection/
Krähenbühl, A., Kerautret, B., Debled-Rennesson, I.: Knot segmentation in noisy 3D images of wood. In: Gonzalez-Diaz, R., Jimenez, M.-J., Medrano, B. (eds.) DGCI 2013. LNCS, vol. 7749, pp. 383–394. Springer, Heidelberg (2013)
Krähenbühl, A., Kerautret, B., Debled-Rennesson, I., Longuetaud, F., Mothe, F.: Knot detection in X-Ray CT images of wood. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Fowlkes, C., Wang, S., Choi, M.-H., Mantler, S., Schulze, J., Acevedo, D., Mueller, K., Papka, M. (eds.) ISVC 2012, Part II. LNCS, vol. 7432, pp. 209–218. Springer, Heidelberg (2012)
Krähenbühl, A., Kerautret, B., Debled-Rennesson, I., Mothe, F., Longuetaud, F.: Knot segmentation in 3D CT images of wet wood. Pattern Recognit. 1, 1–17 (2014)
Krähenbühl, A., Roussel, J.R., Kerautret, B., Debled-Rennesson, I., Mothe, F., Longuetaud, F.: Segmentation robuste de nœuds partir de coupes tangentielles issues d’images tomographiques de bois. In: Actes de la conférence RFIA 2014, June 2014
Moberg, L.: Models of internal knot properties for picea abies. For. Ecol. Manage. 147(2–3), 123–138 (2001)
Sethian, J.A.: Fast marching methods. SIAM Rev. 41, 199–235 (1998)
Todoroki, C., Lowell, E., Dykstra, D.: Automated knot detection with visual post-processing of douglas-fir veneer images. Comput. Electron. Agric. 70(1), 163–171 (2010)
Wells, P., Som, S., Davis, J.: Automated feature extraction from tomographic images of wood. In: Image Computing: Techniques and Applications (DICTA), pp. 56–62. No. 1, Melbourne, Australie, December 1991
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Krähenbühl, A., Kerautret, B., Feschet, F. (2015). Knot Detection from Accumulation Map by Polar Scan. In: Barneva, R., Bhattacharya, B., Brimkov, V. (eds) Combinatorial Image Analysis. IWCIA 2015. Lecture Notes in Computer Science(), vol 9448. Springer, Cham. https://doi.org/10.1007/978-3-319-26145-4_26
Download citation
DOI: https://doi.org/10.1007/978-3-319-26145-4_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-26144-7
Online ISBN: 978-3-319-26145-4
eBook Packages: Computer ScienceComputer Science (R0)