Abstract
We consider the problem of user-item recommendation as a multiuser instance ranking learning. A user-item preference is monotonizable if the learning can restrict to monotone models. A preference model is monotone if it is a monotone composition of rankings on domains of explanatory attributes (possibly describing user behavior, item content but also data aggregations). Target preference ordering of users on items is given by a preference indicator (e.g. purchase, rating).
In this paper we focus on learning the (partial) order of vectors of rankings of user-item attribute values. We measure degree of agreement of comparable vectors with ordering given by preference indicators for each user. We are interested in distribution of this degree across users. We provide sets of experiments on user behavior data from an e-shop and on a subset of the semantically enriched Movie Lens 1M data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Eckhardt, A., Vojtáš, P.: Learning user preferences for 2CP-regression for a recommender system. In: van Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J., Rumpe, B. (eds.) SOFSEM 2010. LNCS, vol. 5901, pp. 346–357. Springer, Heidelberg (2010)
Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware. Journal of Computer and System Sciences 66, 614–656 (2003)
Fürnkranz, J., Hüllermeier, E.: Preference learning: An introduction. In: Preference Learning, pp. 1–17. Springer (2011)
Horvath, T., Eckhardt, A., Buza, K., Vojtas, P., Schmidt-Thieme, L.: Value-transformation for monotone prediction by approximating fuzzy membership functions. In: 2011 IEEE 12th CINTI, IEEE 2011, pp. 367–372 (2012)
Kifer, M., Subrahmanian, V.S.: Theory of generalized annotated logic programming and its ap-plications. Journal of Logic Programming 12(4), 335–367 (1992)
Kuchar, J.: Augmenting a Feature Set of Movies Using Linked Open Data. CEUR Proceedings Vol-1417 Rule Challenge and Doctoral Consortium @ RuleML 2015, Track 2: Rule-based Recommender Systems for the Web of Data. http://ceur-ws.org/Vol-1417/paper16.pdf Dataset. http://nbviewer.ipython.org/urls/s3-eu-west-1.amazonawscom/recsysrules2015/RecSysRules2015-Dataset.ipynb
Peska, L., Vojtas, P.: Modelling user preferences from implicit preference indicators via compensational aggregations. In: Hepp, M., Hoffner, Y. (eds.) EC-Web 2014. LNBIP, vol. 188, pp. 138–145. Springer, Heidelberg (2014)
Vojtas, P., Peska, L.: e-Shop user preferences via user behavior. In: Obaidat, M.S., et al (eds.) ICE-B 2014, pp. 68–75. SciTePress (2014)
Vomlelova, M., Kopecky, M., Vojtas, P.: Transformation and aggregation preprocessing for top-k recommendation GAP rules induction. CEUR Proceedings Vol-1417 Rule Challenge and Doctoral Consortium @ RuleML 2015, Track 2: Rule-based Recommender Systems for the Web of Data. http://ceur-ws.org/Vol-1417/paper18.pdf
Asuncion, A., Newman, D.J.: UCI Machine Learning Repository, Irvine, CA (2007). http://www.ics.uci.edu/~mlearn/MLRepository.html
Keeney, R.L., Raiffa, H.: Decisions with multiple objectives–preferences and value tradeoffs, 569 p. Cambridge University Press, Cambridge (1993)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Kopecky, M., Peska, L., Vojtas, P., Vomlelova, M. (2016). Monotonization of User Preferences. In: Andreasen, T., et al. Flexible Query Answering Systems 2015. Advances in Intelligent Systems and Computing, vol 400. Springer, Cham. https://doi.org/10.1007/978-3-319-26154-6_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-26154-6_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-26153-9
Online ISBN: 978-3-319-26154-6
eBook Packages: Computer ScienceComputer Science (R0)