Skip to main content

Construction of P-Minimal Models Using Paraconsistent Relational Model

  • Conference paper
  • First Online:
Multi-disciplinary Trends in Artificial Intelligence (MIWAI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9426))

  • 1273 Accesses

Abstract

Positive extended disjunctive deductive databases are those that contain explicit negation both in the head and body of the clauses. For such databases, paraconsistent minimal models (p-minimal models) have been proposed based on multi-valued logic (four-valued logic). Moreover, the paraconsistent relational model is also based on four-valued logic. In this paper, we propose an algorithm, which converts clauses to equations and solves it, to find p-minimal models using the paraconsistent relational model. In order to accomplish that, we use disjunctive paraconsistent relation model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \(\mu (\mathcal {T}_P \uparrow \omega )= \{ I \mid I \in \mathcal {T}_P \uparrow \omega \text { and } I \in \mathcal {T_P}({I})\}\).

References

  1. Alcântara, J., Damásio, C.V., Pereira, L.M.: A declarative characterisation of disjunctive paraconsistent answer sets. In: ECAI, vol. 16, p. 951. Citeseer (2004)

    Google Scholar 

  2. Alcântara, J., Damásio, C.V., Moniz, L.M.: Paraconsistent logic programs. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 345–356. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  3. Arieli, O.: Paraconsistent declarative semantics for extended logic programs. Ann. Math. Artif. Intell. 36(4), 381–417 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Arieli, O.: Distance-based paraconsistent logics. Int. J. Approximate Reasoning 48(3), 766–783 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bagai, R., Sunderraman, R.: A paraconsistent relational data model. Int. J. Comput. Math. 55(1–2), 39–55 (1995)

    Article  MATH  Google Scholar 

  6. Bagai, R., Sunderraman, R.: Bottom-up computation of the fitting model for general deductive databases. J. Intell. Inf. Syst. 6(1), 59–75 (1996)

    Article  Google Scholar 

  7. Bagai, R., Sunderraman, R.: Computing the well-founded model of deductive databases. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 4(2), 157–175 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  8. Belnap Jr., N.D.: A useful four-valued logic. In: Michael Dunn, J., Epstein, G. (eds.) Modern Uses of Multiple-Valued Logic, pp. 5–37. Springer, Netherlands (1977)

    Google Scholar 

  9. Blair, H.A., Subrahmanian, V.: Paraconsistent logic programming. Theor. Comput. Sci. 68(2), 135–154 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  10. Carnielli, W., Coniglio, M.E., Marcos, J.: Logics of formal inconsistency. In: Gabbay, D.M., Guenthner, F. (eds.) Handbook of Philosophical Logic, pp. 1–93. Springer, Netherlands (2007)

    Chapter  Google Scholar 

  11. Damásio, C.V., Pereira, L.M.: A survey of paraconsistent semantics for logic programs. In: Besnard, P., Hunter, A. (eds.) Reasoning with Actual and Potential Contradictions, pp. 241–320. Springer, Netherlands (1998)

    Chapter  Google Scholar 

  12. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Gener. Comput. 9(3–4), 365–385 (1991)

    Article  Google Scholar 

  13. Hunter, A.: Paraconsistent logics. In: Besnard, P., Hunter, A. (eds.) Reasoning with Actual and Potential Contradictions, pp. 11–36. Springer, Netherlands (1998)

    Chapter  Google Scholar 

  14. Hunter, A.: Reasoning with contradictory information using quasi-classical logic. J. Logic Comput. 10(5), 677–703 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Jayakumar, B., Sunderraman, R.: Paraconsistent relational model: a quasi-classic logic approach. In: IJCAI Workshop 13 Ontologies and Logic Programming for Query Answering, Buenos Aires, Argentina, pp. 82–90, July 2015

    Google Scholar 

  16. Minker, J., Seipel, D.: Disjunctive logic programming: a survey and assessment. In: Kakas, A.C., Sadri, F. (eds.) Computational Logic: Logic Programming and Beyond. LNCS (LNAI), vol. 2407, pp. 472–511. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  17. Sakama, C., Inoue, K.: Paraconsistent stable semantics for extended disjunctive programs. J. Logic Comput. 5(3), 265–285 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  18. Subrahmanian, V.: Paraconsistent disjunctive deductive databases. In: Proceedings of the Twentieth International Symposium on Multiple-Valued Logic, pp. 339–346. IEEE (1990)

    Google Scholar 

  19. Zhang, Z., Lin, Z., Ren, S.: Quasi-classical model semantics for logic programs – a paraconsistent approach. In: Rauch, J., Raś, Z.W., Berka, P., Elomaa, T. (eds.) ISMIS 2009. LNCS, vol. 5722, pp. 181–190. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Badrinath Jayakumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Jayakumar, B., Sunderraman, R. (2015). Construction of P-Minimal Models Using Paraconsistent Relational Model. In: Bikakis, A., Zheng, X. (eds) Multi-disciplinary Trends in Artificial Intelligence. MIWAI 2015. Lecture Notes in Computer Science(), vol 9426. Springer, Cham. https://doi.org/10.1007/978-3-319-26181-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26181-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26180-5

  • Online ISBN: 978-3-319-26181-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics