Abstract
Due to their immense complexity, large-scale multiagent systems are often unamenable to exhaustive formal verification. Statistical approaches that focus on the verification of individual traces can provide an interesting alternative. However, due to its focus on finite execution paths, trace-based verification is inherently limited to certain types of correctness properties. We show how, by combining sampling with the idea of trace fragmentation, statistical model checking can be used to answer interesting quantitative correctness properties about multiagent systems on different observational levels. We illustrate the idea with a simple case study from the area of swarm robotics.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
For simplicity, we omit the environment in our formal description.
- 2.
For simplicity, we ignore some of the intricate semantic issues of LTL in the presence of finite traces. For more information, please refer to the literature [3].
- 3.
We assume that agents are numbered from 1 to n and that the number of agents is fixed.
- 4.
The definition of functions for negative correlation and non-correlation, i.e. statistical independence, are omitted; they can be given accordingly.
- 5.
All experiments were conducted on a Viglen Genie Desktop PC with four Intel® Core™ i5 CPUs (3.2 GHz each), 3.7 GB of memory and Gentoo Linux (kernel version 3.10.25) as operating system, using the verification tool \( \texttt {MC} ^ \texttt {2} \texttt {MABS} \) [10]. Results are based on experiments involving 100 replications of the given model.
- 6.
For clarity, we abbreviate states with their capitalised first letters in all subsequent tables.
- 7.
For space limitation, the states are abbreviated with lower-case letters, e.g. s for searching.
References
Baier, C., Katoen, J.-P.: Principles of Model Checking. The MIT Press, Cambridge (2008)
Ballarini, P., Fisher, M., Wooldridge, M.: Uncertain agent verification through probabilistic model-checking. In: Barley, M., Mouratidis, H., Unruh, A., Spears, D., Scerri, P., Massacci, F. (eds.) SASEMAS 2004-2006. LNCS, vol. 4324, pp. 162–174. Springer, Heidelberg (2009)
Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics for runtime verification. J. Logic Comput. 20(3), 651–674 (2010)
Cao, Y.U., Fukunaga, A.S., Kahng, A.: Cooperative mobile robotics: antecedents and directions. Auton. Robots 4(1), 7–27 (1997)
Clarke, E., Emerson, E., Jha, S., Sistla, A.: Symmetry reductions in model checking. In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427, pp. 147–158. Springer, Heidelberg (1998)
Clarke, E., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)
Dekhtyar, M.I., Dikovsky, A.J., Valiev, M.K.: Temporal verification of probabilistic multi-agent systems. In: Avron, A., Dershowitz, N., Rabinovich, A. (eds.) Pillars of Computer Science. LNCS, vol. 4800, pp. 256–265. Springer, Heidelberg (2008)
Dix, J., Fisher, M.: Specification and verification of multi-agent systems. In: Multiagent Systems. MIT Press, Cambridge (2013)
Finkbeiner, B., Sankaranarayanan, S., Sipma, H.B.: Collecting statistics over runtime executions. Formal Methods Syst. Des. 27(3), 253–274 (2005)
Herd, B.: Statistical runtime verification of agent-based simulations. Ph.D. thesis, King’s College London (2015)
Herd, B., Miles, S., McBurney, P., Luck, M.: An LTL-based property specification language for agent-based simulation traces. Technical Report 14–02, King’s College London, October 2014
Hitchcock, C.: Probabilistic causation. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Winter 201 edn. (2012)
Kleinberg, S., Mishra, B.: The temporal logic of causal structures. In: Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence, pp. 303–312. AUAI Press (2009)
Konur, S., Dixon, C., Fisher, M.: Formal verification of probabilistic swarm behaviours. In: Dorigo, M., et al. (eds.) ANTS 2010. LNCS, vol. 6234, pp. 440–447. Springer, Heidelberg (2010)
Kouvaros, P., Lomuscio, A.: Automatic verification of parameterised multi-agent systems. In: Proceedings of the 12th International Conference on Autonomous Agents and Multi-agent Systems, Richland, SC, pp. 861–868 (2013)
Kouvaros, P., Lomuscio, A.: A cutoff technique for the verification of parameterised interpreted systems with parameterised environments. In: Proceedings of the 23rd International Joint Conference on Artificial Intelligence, pp. 2013–2019. AAAI Press (2013)
Kwiatkowska, M., Lomuscio, A., Qu, H.: Parallel model checking for temporal epistemic logic. In: Proceedings of the 19th European Conference on Artificial Intelligence, pp. 543–548. IOS Press, Amsterdam (2010)
Kwiatkowska, M., Norman, G., Parker, D.: Quantitative analysis with the probabilistic model checker PRISM. Electron. Notes Theor. Comput. Sci. 153(2), 5–31 (2006). Proc. 3rd Workshop on Quantitative Aspects of Programming Languages
Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. In: Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 220–270. Springer, Heidelberg (2007)
Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Qadeer, S., Gopalakrishnan, G. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011)
Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: an overview. In: Barringer, H., et al. (eds.) RV 2010. LNCS, vol. 6418, pp. 122–135. Springer, Heidelberg (2010)
Liu, W., Winfield, A., Sa, J.: Modelling swarm robotic systems: a case study in collective foraging. In: Towards Autonomous Robotic Systems, pp. 25–32 (2007)
Lomuscio, A., Penczek, W., Qu, H.: Partial order reductions for model checking temporal-epistemic logics over interleaved multi-agent systems. Fundamenta Informaticae 101(1–2), 71–90 (2010)
Lomuscio, A., Penczek, W., Woz̀na, B.: Bounded model checking for knowledge and real time. Artif. Intell. 171(16–17), 1011–1038 (2007)
Nimal, V.: Statistical approaches for probabilistic model checking. MSc Mini-project Dissertation, Oxford University Computing Laboratory (2010)
Pedersen, T., Dyrkolbotn, S.K.: Agents homogeneous: a procedurally anonymous semantics characterizing the homogeneous fragment of ATL. In: Boella, G., Elkind, E., Savarimuthu, B.T.R., Dignum, F., Purvis, M.K. (eds.) PRIMA 2013. LNCS, vol. 8291, pp. 245–259. Springer, Heidelberg (2013)
Sammapun, U., Lee, I., Sokolsky, O., Regehr, J.: Statistical runtime checking of probabilistic properties. In: Sokolsky, O., Taşıran, S. (eds.) RV 2007. LNCS, vol. 4839, pp. 164–175. Springer, Heidelberg (2007)
Wan, W., Bentahar, J., Ben Hamza, A.: Model checking epistemic and probabilistic properties of multi-agent systems. In: Mehrotra, K.G., Mohan, C.K., Oh, J.C., Varshney, P.K., Ali, M. (eds.) IEA/AIE 2011, Part II. LNCS, vol. 6704, pp. 68–78. Springer, Heidelberg (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Herd, B., Miles, S., McBurney, P., Luck, M. (2015). Quantitative Analysis of Multiagent Systems Through Statistical Model Checking. In: Baldoni, M., Baresi, L., Dastani, M. (eds) Engineering Multi-Agent Systems. EMAS 2015. Lecture Notes in Computer Science(), vol 9318. Springer, Cham. https://doi.org/10.1007/978-3-319-26184-3_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-26184-3_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-26183-6
Online ISBN: 978-3-319-26184-3
eBook Packages: Computer ScienceComputer Science (R0)