Skip to main content

Quantitative Analysis of Multiagent Systems Through Statistical Model Checking

  • Conference paper
  • First Online:
Engineering Multi-Agent Systems (EMAS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9318))

Included in the following conference series:

  • 585 Accesses

Abstract

Due to their immense complexity, large-scale multiagent systems are often unamenable to exhaustive formal verification. Statistical approaches that focus on the verification of individual traces can provide an interesting alternative. However, due to its focus on finite execution paths, trace-based verification is inherently limited to certain types of correctness properties. We show how, by combining sampling with the idea of trace fragmentation, statistical model checking can be used to answer interesting quantitative correctness properties about multiagent systems on different observational levels. We illustrate the idea with a simple case study from the area of swarm robotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For simplicity, we omit the environment in our formal description.

  2. 2.

    For simplicity, we ignore some of the intricate semantic issues of LTL in the presence of finite traces. For more information, please refer to the literature [3].

  3. 3.

    We assume that agents are numbered from 1 to n and that the number of agents is fixed.

  4. 4.

    The definition of functions for negative correlation and non-correlation, i.e. statistical independence, are omitted; they can be given accordingly.

  5. 5.

    All experiments were conducted on a Viglen Genie Desktop PC with four Intel® Core™ i5 CPUs (3.2 GHz each), 3.7 GB of memory and Gentoo Linux (kernel version 3.10.25) as operating system, using the verification tool \( \texttt {MC} ^ \texttt {2} \texttt {MABS} \) [10]. Results are based on experiments involving 100 replications of the given model.

  6. 6.

    For clarity, we abbreviate states with their capitalised first letters in all subsequent tables.

  7. 7.

    For space limitation, the states are abbreviated with lower-case letters, e.g. s for searching.

References

  1. Baier, C., Katoen, J.-P.: Principles of Model Checking. The MIT Press, Cambridge (2008)

    MATH  Google Scholar 

  2. Ballarini, P., Fisher, M., Wooldridge, M.: Uncertain agent verification through probabilistic model-checking. In: Barley, M., Mouratidis, H., Unruh, A., Spears, D., Scerri, P., Massacci, F. (eds.) SASEMAS 2004-2006. LNCS, vol. 4324, pp. 162–174. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics for runtime verification. J. Logic Comput. 20(3), 651–674 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cao, Y.U., Fukunaga, A.S., Kahng, A.: Cooperative mobile robotics: antecedents and directions. Auton. Robots 4(1), 7–27 (1997)

    Article  Google Scholar 

  5. Clarke, E., Emerson, E., Jha, S., Sistla, A.: Symmetry reductions in model checking. In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427, pp. 147–158. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  6. Clarke, E., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)

    Google Scholar 

  7. Dekhtyar, M.I., Dikovsky, A.J., Valiev, M.K.: Temporal verification of probabilistic multi-agent systems. In: Avron, A., Dershowitz, N., Rabinovich, A. (eds.) Pillars of Computer Science. LNCS, vol. 4800, pp. 256–265. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Dix, J., Fisher, M.: Specification and verification of multi-agent systems. In: Multiagent Systems. MIT Press, Cambridge (2013)

    Google Scholar 

  9. Finkbeiner, B., Sankaranarayanan, S., Sipma, H.B.: Collecting statistics over runtime executions. Formal Methods Syst. Des. 27(3), 253–274 (2005)

    Article  MATH  Google Scholar 

  10. Herd, B.: Statistical runtime verification of agent-based simulations. Ph.D. thesis, King’s College London (2015)

    Google Scholar 

  11. Herd, B., Miles, S., McBurney, P., Luck, M.: An LTL-based property specification language for agent-based simulation traces. Technical Report 14–02, King’s College London, October 2014

    Google Scholar 

  12. Hitchcock, C.: Probabilistic causation. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Winter 201 edn. (2012)

    Google Scholar 

  13. Kleinberg, S., Mishra, B.: The temporal logic of causal structures. In: Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence, pp. 303–312. AUAI Press (2009)

    Google Scholar 

  14. Konur, S., Dixon, C., Fisher, M.: Formal verification of probabilistic swarm behaviours. In: Dorigo, M., et al. (eds.) ANTS 2010. LNCS, vol. 6234, pp. 440–447. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  15. Kouvaros, P., Lomuscio, A.: Automatic verification of parameterised multi-agent systems. In: Proceedings of the 12th International Conference on Autonomous Agents and Multi-agent Systems, Richland, SC, pp. 861–868 (2013)

    Google Scholar 

  16. Kouvaros, P., Lomuscio, A.: A cutoff technique for the verification of parameterised interpreted systems with parameterised environments. In: Proceedings of the 23rd International Joint Conference on Artificial Intelligence, pp. 2013–2019. AAAI Press (2013)

    Google Scholar 

  17. Kwiatkowska, M., Lomuscio, A., Qu, H.: Parallel model checking for temporal epistemic logic. In: Proceedings of the 19th European Conference on Artificial Intelligence, pp. 543–548. IOS Press, Amsterdam (2010)

    Google Scholar 

  18. Kwiatkowska, M., Norman, G., Parker, D.: Quantitative analysis with the probabilistic model checker PRISM. Electron. Notes Theor. Comput. Sci. 153(2), 5–31 (2006). Proc. 3rd Workshop on Quantitative Aspects of Programming Languages

    Article  Google Scholar 

  19. Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. In: Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 220–270. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  20. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Qadeer, S., Gopalakrishnan, G. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  21. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: an overview. In: Barringer, H., et al. (eds.) RV 2010. LNCS, vol. 6418, pp. 122–135. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  22. Liu, W., Winfield, A., Sa, J.: Modelling swarm robotic systems: a case study in collective foraging. In: Towards Autonomous Robotic Systems, pp. 25–32 (2007)

    Google Scholar 

  23. Lomuscio, A., Penczek, W., Qu, H.: Partial order reductions for model checking temporal-epistemic logics over interleaved multi-agent systems. Fundamenta Informaticae 101(1–2), 71–90 (2010)

    MATH  MathSciNet  Google Scholar 

  24. Lomuscio, A., Penczek, W., Woz̀na, B.: Bounded model checking for knowledge and real time. Artif. Intell. 171(16–17), 1011–1038 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  25. Nimal, V.: Statistical approaches for probabilistic model checking. MSc Mini-project Dissertation, Oxford University Computing Laboratory (2010)

    Google Scholar 

  26. Pedersen, T., Dyrkolbotn, S.K.: Agents homogeneous: a procedurally anonymous semantics characterizing the homogeneous fragment of ATL. In: Boella, G., Elkind, E., Savarimuthu, B.T.R., Dignum, F., Purvis, M.K. (eds.) PRIMA 2013. LNCS, vol. 8291, pp. 245–259. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  27. Sammapun, U., Lee, I., Sokolsky, O., Regehr, J.: Statistical runtime checking of probabilistic properties. In: Sokolsky, O., Taşıran, S. (eds.) RV 2007. LNCS, vol. 4839, pp. 164–175. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  28. Wan, W., Bentahar, J., Ben Hamza, A.: Model checking epistemic and probabilistic properties of multi-agent systems. In: Mehrotra, K.G., Mohan, C.K., Oh, J.C., Varshney, P.K., Ali, M. (eds.) IEA/AIE 2011, Part II. LNCS, vol. 6704, pp. 68–78. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Herd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Herd, B., Miles, S., McBurney, P., Luck, M. (2015). Quantitative Analysis of Multiagent Systems Through Statistical Model Checking. In: Baldoni, M., Baresi, L., Dastani, M. (eds) Engineering Multi-Agent Systems. EMAS 2015. Lecture Notes in Computer Science(), vol 9318. Springer, Cham. https://doi.org/10.1007/978-3-319-26184-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26184-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26183-6

  • Online ISBN: 978-3-319-26184-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics