Skip to main content

Optimization of the LVQ Network Architectures with a Modular Approach for Arrhythmia Classification

  • Conference paper
  • First Online:
Novel Developments in Uncertainty Representation and Processing

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 401))

  • 571 Accesses

Abstract

In this paper, the optimization of LVQ neural networks with modular approach is presented for classification of arrhythmias, using particle swarm optimization. This work focuses only in the optimization of the number of modules and the number of cluster centers. Other parameters, such as the learning rate or number of epochs are static values and are not optimized. Here, the MIT-BIH arrhythmia database with 15 classes was used. Results show that using 5 modules architecture could be a good approach for classification of arrhythmias.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amezcua J., Melin P.: A modular LVQ neural network with fuzzy response integration for arrhythmia classification. In: IEEE 2014 Conference on Norbert Wiener in the 21st century, Boston, June 2014

    Google Scholar 

  2. Amezcua J., Melin P.: Optimization of Modular Neural Networks with the LVQ Algorithm for Classification of Arrhythmias using Particle Swarm Optimization, Recent Advances on Hybrid Approaches for Designing Intelligent Systems. Studies in Computational Intelligence Book 547, pp. 307–314. Springer, 2014

    Google Scholar 

  3. Anuradha B., Veera-Reddy V.C.: Cardiac arrhythmia classification using fuzzy classifiers. J. Theor. Appl. Inform. Technol. 353–359 (2005)

    Google Scholar 

  4. Biswal, B., Biswal, M., Hasan, S., Dash, P.K.: Nonstationary power signal time series data classification using LVQ classifier. Appl. Soft Comput. Elsevier 18, 158–166 (2014)

    Article  Google Scholar 

  5. Castillo, O., Melin, P., Ramirez, E., Soria, J.: Hybrid intelligent system for cardiac arrhythmia classification with Fuzzy K-Nearest Neighbors and neural networks combined with a fuzzy system. J. Expert Syst. Appl. 39(3), 2947–2955 (2012)

    Article  Google Scholar 

  6. Cavuslu, M., Karakuzu, C., Karakaya, F.: Nueral Identification of dynamic systems on FPGA with improved PSO learning. Appl. Soft Comput. Elsevier 12, 2707–2718 (2012)

    Article  Google Scholar 

  7. Frasconi, P., Gori, M., Soda, G.: Links between LVQ and backpropagation original research article. Pattern Recogn. Lett. 18(4), 303–310 (1997)

    Article  Google Scholar 

  8. Grbovic M., Vucetic S.: Regression learning vector quantization. In: 2009 Ninth IEEE International Conference on Data Mining, Miami, December 2009

    Google Scholar 

  9. Hashemi, A.B., Meybodi, M.R.: A note on the learning automata based algorithms for adaptive parameter selection in PSO. Appl. Soft Comput. Elsevier 11, 689–705 (2011)

    Article  Google Scholar 

  10. Hu Y.H., Palreddy S., Tompkins W.: A patient adaptable ECG beat classifier using a mixture of experts approach. IEEE Trans. Biomed. Eng. 891–900 (1997)

    Google Scholar 

  11. Hu, Y.H., Tompkins, W., Urrusti, J.L., Afonso, V.X.: Applications of ANN for ECG signal detection and classification. J. Electrocardiol. 28, 66–73 (1994)

    Google Scholar 

  12. Kim J., Sik-Shin H., Shin K., Lee M.: Robust algorithm for arrhythmia classification in ECG using extreme learning machine. Biomed. Eng. Online (2009)

    Google Scholar 

  13. Kohonen T.: Improved versions of learning vector quantization. In: International Joint Conference on Neural Networks, vol. 1, pp. 545–550, San Diego (1990)

    Google Scholar 

  14. Krisshna N.L., Kadetotad Deepak V., Manikantan K., Ramachandran S.: Face recognition using transform domain feature extraction and PSO-based feature selection. Appl. Soft Comput. Elsevier. 22, 141–161 (2014)

    Google Scholar 

  15. Learning Vector Quantization Networks. http://www.mathworks.com/help/nnet/ug/bss4b_l-15.html. Last Accessed 24 June 2014

  16. Lee, C., Leu, Y., Yang, W.: Constructing gene regulatory networks from microarray data using GA/PSO with DTW. Appl. Soft Comput. Elsevier 12, 1115–1124 (2012)

    Article  Google Scholar 

  17. Martín-Valdivia, M.T., Ureña-López, L.A., García-Vega, M.: The learning vector quantization algorithm applied to automatic text classification tasks. Neural Netw. 20(6), 748–756 (2007)

    Article  MATH  Google Scholar 

  18. Melin, P., Amezcua, J., Valdez, F., Castillo, O.: A new neural network model based on the LVQ algorithm for multi-class classification of arrhythmias. Inf. Sci. 279, 483–497 (2014)

    Article  MathSciNet  Google Scholar 

  19. MIT-BIH Arrhythmia Database. PhysioBank, Physiologic Signal Archives for Biomedical Research. http://www.physionet.org/physiobank/database/mitdb/. Last Accessed 24 June 2014

  20. Narayan, R., Chatterjee, D., Kumar-Goswami, S.: An application of PSO technique for harmonic elimination in a PWM inverter. Appl. Soft Comput. Elsevier 9, 1315–1320 (2009)

    Article  Google Scholar 

  21. Nasiri J.A., Naghibzadeh M., Yazdi H.S., Naghibzadeh B.: ECG arrhythmia classification with support vector machines and genetic algorithm. In: Third UKSim European Symposium on Computer Modeling and Simulation, 2009

    Google Scholar 

  22. Nouaouria, N., Boucadoum, M.: Improved global-best particle swarm optimization algorithm with mixed-attribute data classification capability. Appl. Soft Comput. Elsevier 21, 554–567 (2014)

    Article  Google Scholar 

  23. Owis M.I., Abou-Zied A.H., Youssef A.M., Kadah Y.M.: Study of features based on non-linear dynamical modeling in ECG arrhythmia detection and classification. IEEE Trans. Biomed. Eng. 49(7) (2002)

    Google Scholar 

  24. Pang-Ning T., Steinbach M., Kumar V.: Introduction to Data Mining, pp. 145–148. Pearson Addison Wesley (2006)

    Google Scholar 

  25. Pedreira C.: Learning vector quantization with training data selection. IEEE Trans. Pattern Anal. Mach. Intell. 28, 157–162 (2006)

    Google Scholar 

  26. Torrecilla, J.S., Rojo, E., Oliet, M., Domínguez, J.C., Rodríguez, F.: Self-organizing maps and learning vector quantization networks as tools to identify vegetable oils and detect adulterations of extra virgin olive oil. Comput. Aided Chem. Eng. 28, 313–318 (2010)

    Article  Google Scholar 

  27. Tsipouras M.G., Fotiadis D.I., Sideris D.: An arrhythmia classification system based on the RR-interval signal. Artif. Intell. Med. 237–250 (2005)

    Google Scholar 

  28. Vellasques, E., Sabourin, R., Granger, E.: Fast intelligent watermarking of heterogeneous image streams through mixture modeling of PSO populations. Appl. Soft Comput. Elsevier 13, 3130–3148 (2013)

    Article  Google Scholar 

  29. Vieira, S., Mendoca, L., Farinha, G., Souza, J.: Modified binary PSO for feature selection using SVM applied to mortality prediction of septic patients. Appl. Soft Comput. Elsevier 13, 3494–3504 (2013)

    Article  Google Scholar 

  30. Xinye Z., Jubai A., ZhiFeng Y.: A method of LVQ network to detect vehicle based on morphology. In: 2009 WRI Global Congress on Intelligent Systems, Xiamen, China, May 2009

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Amezcua .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Amezcua, J., Melin, P. (2016). Optimization of the LVQ Network Architectures with a Modular Approach for Arrhythmia Classification. In: Atanassov, K., et al. Novel Developments in Uncertainty Representation and Processing. Advances in Intelligent Systems and Computing, vol 401. Springer, Cham. https://doi.org/10.1007/978-3-319-26211-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26211-6_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26210-9

  • Online ISBN: 978-3-319-26211-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics