Abstract
Integrity protection has proven an effective way of malware detection and defense. Determining the integrity of subjects (programs) and objects (files and registries) plays a fundamental role in integrity protection. However, the large numbers of subjects and objects, and intricate behaviors place burdens on revealing their integrities either manually or by a set of rules. In this paper, we propose a probabilistic model of integrity in modern operating system. Our model builds on two primary security policies, “no read down” and “no write up”, which make connections between observed access behaviors and the inherent integrity ordering between pairs of subjects and objects. We employ a message passing based inference to determine the integrity of subjects and objects under a probabilistic graphical model. Furthermore, by leveraging a statistical classifier, we build an integrity based access behavior model for malware detection. Extensive experimental results on a real-world dataset demonstrate that our model is capable of detecting 7,257 malware samples from 27,840 benign processes at 99.88 % true positive rate under 0.1 % false positive rate. These results indicate the feasibility of our probabilistic integrity model.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
In fact, we find s is about 7 in our experiments.
References
Anderson, R.: Security Engineering: A Guide to Building Dependable Distributed Systems. John Wiley & Sons (2008)
Apap, F., Honig, A., Hershkop, S., Eskin, E., Stolfo, S.J.: Detecting malicious software by monitoring anomalous windows registry accesses. In: Wespi, A., Vigna, G., Deri, L. (eds.) RAID 2002. LNCS, vol. 2516, p. 36. Springer, Heidelberg (2002)
Bellovin, S.M.: Security and usability: windows vista, July 2007. https://www.cs.columbia.edu/ smb/blog/2007-07/2007-07-13.html
Biba, K.J.: Integrity considerations for secure computer systems. ESD-TR 76–372, MITRE Corp. (1977)
Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)
Canali, D., Lanzi, A., Balzarotti, D., Kruegel, C., Christodorescu, M., Kirda, E.: A quantitative study of accuracy in system call-based malware detection. In: Proceedings of the 2012 International Symposium on Software Testing and Analysis, pp. 122–132. ACM (2012)
Fraser, T.: Lomac: low water-mark integrity protection for cots environments. In: IEEE Symposium on Security and Privacy (S&P), pp. 230–245 (2000)
Fredrikson, M., Jha, S., Christodorescu, M., Sailer, R., Yan, X.: Synthesizing near-optimal malware specifications from suspicious behaviors. In: IEEE Symposium on Security and Privacy (S&P), pp. 45–60 (2010)
Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B.: Bayesian data analysis, vol. 2. Taylor & Francis (2014)
Gu, Z., Pei, K., Wang, Q., Si, L., Zhang, X., Xu, D.: LEAPS: detecting camouflaged attacks with statistical learning guided by program analysis. In: 45th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). IEEE (2015)
How the integrity mechanism is implemented in Windows Vista (2014). http://msdn.microsoft.com/en-us/library/bb625962.aspx,
Hsu, F., Chen, H., Ristenpart, T., Li, J., Su, Z.: Back to the future: a framework for automatic malware removal and system repair. In: 22nd Annual Computer Security Applications Conference, ACSAC 2006, pp. 257–268. IEEE (2006)
King, S.T., Chen, P.M.: Backtracking intrusions. ACM Trans. Comput. Syst. 23, 51–76 (2005)
Koller, D., Friedman, N.: Probabilistic graphical models: principles and techniques. MIT press (2009)
Kruegel, C., Kirda, E., Mutz, D., Robertson, W., Vigna, G.: Automating mimicry attacks using static binary analysis. In: Proceedings of the 14th conference on USENIX Security Symposium, vol. 14, pp. 11–11. USENIX Association (2005)
Kruegel, C., Mutz, D., Valeur, F., Vigna, G.: On the detection of anomalous system call arguments. In: Snekkenes, E., Gollmann, D. (eds.) ESORICS 2003. LNCS, vol. 2808, pp. 326–343. Springer, Heidelberg (2003)
Lanzi, A., Balzarotti, D., Kruegel, C., Christodorescu, M., Kirda, E.: Accessminer: using system-centric models for malware protection. In: Proceedings of the 17th ACM conference on Computer and Communications Security (CCS), pp. 399–412. ACM (2010)
Manadhata, P.K., Yadav, S., Rao, P., Horne, W.: Detecting malicious domains via graph inference. In: Kutyłowski, M., Vaidya, J. (eds.) ICAIS 2014, Part I. LNCS, vol. 8712, pp. 1–18. Springer, Heidelberg (2014)
Mandatory Integrity Control (2014). http://msdn.microsoft.com/en-us/library/windows/desktop/bb648648
Mao, W., Cai, Z., Guan, X., Towsley, D.: Centrality metrics of importance in access behaviors and malware detections. In: Proceedings of the 30th Annual Computer Security Applications Conference (ACSAC 2014). ACM (2014)
Mao, Z., Li, N., Chen, H., Jiang, X.: Combining discretionary policy with mandatory information flow in operating systems. ACM Trans. Inf. Syst. Secur. (TISSEC) 14(3), 24 (2011)
Mark Russinovich, B.C.: Process monitor (2014). http://technet.microsoft.com/en-us/sysinternals/bb896645
Muthukumaran, D., Rueda, S., Talele, N., Vijayakumar, H., Teutsch, J., Jaeger, T., Edwards, N.: Transforming commodity security policies to enforce Clark-Wilson integrity. In: Proceedings of the 28th Annual Computer Security Applications Conference (ACSAC 2012). ACM (2012)
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Sun, W., Sekar, R., Liang, Z., Venkatakrishnan, V.N.: Expanding malware defense by securing software installations. In: Zamboni, D. (ed.) DIMVA 2008. LNCS, vol. 5137, pp. 164–185. Springer, Heidelberg (2008)
Sun, W., Sekar, R., Poothia, G., Karandikar, T.: Practical proactive integrity preservation: a basis for malware defense. In: IEEE Symposium on Security and Privacy (S&P), pp. 248–262 (2008)
Symantec. Internet Security Threat Report, April 2015. https://www4.symantec.com/mktginfo/whitepaper/ISTR/21347932_GA-internet-security-threat-report-volume-20-2015-social_v2.pdf
Sze, W.-K., Sekar, R.: A portable user-level approach for system-wide integrity protection. In: Proceedings of the 29th Annual Computer Security Applications Conference (ACSAC 2013), pp. 219–228. ACM (2013)
Tamersoy, A., Roundy, K., Chau, D.H.: Guilt by association: large scale malware detection by mining file-relation graphs. In: Proceedings of the 20th ACM SIGKDD international conference on Knowledge Discovery and Data Mining, pp. 1524–1533. ACM (2014)
VXHeaven (2010). http://vx.netlux.org/
Acknowledgments
We would like to thank our shepherd, Manos Antonakakis, and the anonymous reviewers for their insightful comments that greatly helped improve the presentation of this paper. This work is supported by NFSC (61175039, 61221063, 61403301), 863 High Tech Development Plan (2012AA011003), Research Fund for Doctoral Program of Higher Education of China (20090201120032), International Research Collaboration Project of Shaanxi Province (2013KW11) and Fundamental Research Funds for Central Universities (2012jdhz08). Any opinions, findings, and conclusions or recommendations expressed in this material are the authors’ and do not necessarily reflect those of the sponsor.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Appendix- Derivation of Eq. (8)
Appendix- Derivation of Eq. (8)
\(P(E_I|Acc)\propto \sum _{T}{P(Acc|T)P(T|E_I)\sum _{D}{P(E_I|D)P(D)}}\), where
And then,
-
(1.)
If \(I(s)<I(o)\):
$$ \begin{aligned} P(<|Acc)\propto & {} \frac{\alpha _1}{\alpha _1+\alpha _2+\alpha _3}\Delta \int _{T}{t_1^{N_r}t_2^{N_w}t_3^{N_{r \& w}} \frac{t_1^{\beta _1}t_2^{\beta _2-1}t_3^{\beta _3-1}}{B(1+\beta _1, \beta _2, \beta _3)}} \mathop {}\!\mathrm {d}T, \nonumber \\= & {} \frac{\alpha _1}{\alpha _1+\alpha _2+\alpha _3}\Delta \frac{B(N_r+\beta _1+1, N_w+\beta _2, N_{r \& w}\beta _3)}{B(1+\beta _1, \beta _2, \beta _3)}, \nonumber \\= & {} \frac{\alpha _1}{\alpha _1+\alpha _2+\alpha _3}\Delta \frac{\beta _1+\beta _2+\beta _3}{\beta _1}\frac{N_r+\beta _1}{N+\beta _1+\beta _2+\beta _3}\Omega , \end{aligned}$$(19)where \( \Delta =\frac{\Gamma (N+1)}{\Gamma (N_r+1)\Gamma (N_w+1)\Gamma (N_{r \& w}+1)}\), \( \Omega =\frac{B(N_r+\beta _1, N_w+\beta _2, N_{r \& w}+\beta _3)}{B(\beta _1, \beta _2, \beta _3)}\), and \(B(\beta _1, \beta _2, \beta _3)=\frac{\Gamma (\beta _1)\Gamma (\beta _2)\Gamma (\beta _3)}{\Gamma (\beta _1+\beta _2+\beta _3)}\).
-
(2.)
If \(I(s)=I(o)\):
$$ \begin{aligned} P(=|Acc) \propto \frac{\alpha _2}{\alpha _1+\alpha _2+\alpha _3}\Delta \int _{T}{t_1^{N_r}t_2^{N_w}t_3^{N_{r \& w}} \frac{t_1^{\beta _1-1}t_2^{\beta _2-1}t_3^{\beta _3-1}}{B(\beta _1, \beta _2, \beta _3)}} \mathop {}\!\mathrm {d}T = \frac{\alpha _2}{\alpha _1+\alpha _2+\alpha _3}\Delta \Omega . \end{aligned}$$(20) -
(3.)
If \(I(s)>I(o)\):
$$ \begin{aligned} P(>|Acc)\propto & {} \frac{\alpha _3}{\alpha _1+\alpha _2+\alpha _3}\Delta \int _{T}{t_1^{N_r}t_2^{N_w}t_3^{N_{r \& w}} \frac{t_1^{\beta _1-1}t_2^{\beta _2}t_3^{\beta _3-1}}{B(\beta _1, \beta _2+1, \beta _3)}} \mathop {}\!\mathrm {d}T, \nonumber \\= & {} \frac{\alpha _3}{\alpha _1+\alpha _2+\alpha _3}\Delta \frac{\beta _1+\beta _2+\beta _3}{\beta _2}\frac{N_w+\beta _2}{N+\beta _1+\beta _2+\beta _3}\Omega . \nonumber \\ \end{aligned}$$(21)
Summing up Eqs. (19)–(21), we derive the posterior distribution of \(E_I\) given Acc, i.e., \(P(E_I|Acc)\), as shown in Eqs. (9)–(11).
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Mao, W., Cai, Z., Towsley, D., Guan, X. (2015). Probabilistic Inference on Integrity for Access Behavior Based Malware Detection. In: Bos, H., Monrose, F., Blanc, G. (eds) Research in Attacks, Intrusions, and Defenses. RAID 2015. Lecture Notes in Computer Science(), vol 9404. Springer, Cham. https://doi.org/10.1007/978-3-319-26362-5_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-26362-5_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-26361-8
Online ISBN: 978-3-319-26362-5
eBook Packages: Computer ScienceComputer Science (R0)