Skip to main content

A Lightweight Distributed Architecture to Integrate Fuzzy Relevant Objects in Real-Time Environments

  • Conference paper
  • First Online:
Ubiquitous Computing and Ambient Intelligence. Sensing, Processing, and Using Environmental Information (UCAmI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9454))

Abstract

The development of intelligent environments from scratch means an arduous and complex process. In these environments, the integration of sensors and the design of processing information in real time are key aspects in order to generate feasible solutions. To shed light on this context, in this contribution, we present an architecture for information processing based on object distribution services. The capture and processing of data are developed ubiquitously within mobile devices and ambient computers by means of peer to peer based on fuzzy temporal subscriptions. The main advantage of the use of fuzzy temporal subscriptions is that the information is received by a subscriber when it reaches a desired level of relevance for this subscriber, implying a decrease in the communication burden in the architecture. In order to illustrate the usefulness and effectiveness of our proposal, a scene of an user performing an activity in an intelligent environment is described by means of his interactions with the environmental objects and the identification of users by marker-based tracking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.omg.org/spec/DDS/1.2/.

  2. 2.

    http://ceatic.ujaen.es/smartlab/ucami_smartlab_scene.zip.

References

  1. Balan, R.K., Satyanarayanan, M., Park, S.Y., Okoshi, T.: Tactics-based remote execution for mobile computing. In: Proceedings of the 1st International Conference on Mobile Systems, Applications and Services, pp. 273–286. ACM, May 2003

    Google Scholar 

  2. Botts, M., Robin, A.: OpenGIS sensor model language (SensorML) implementation specification. OpenGIS Implementation Specification OGC, 07–000 (2007)

    Google Scholar 

  3. Castro, J.L., Delgado, M., Medina, J., Ruiz-Lozano, M.D.: Intelligent surveillance system with integration of heterogeneous information for intrusion detection. Expert Syst. Appl. 38(9), 11182–11192 (2011)

    Article  Google Scholar 

  4. Compton, M., Barnaghi, P., Bermudez, L., Garcia-Castro, R., Corcho, O., Cox, S., Taylor, K.: The SSN ontology of the W3C semantic sensor network incubator group. Web Semant. Sci. Serv. Agents. World Wide Web 17, 25–32 (2012)

    Article  Google Scholar 

  5. De, S., Nandi, S., Goswami, D.: Tuple space enhancements for mobile middleware. Int. J. Commun. Netw. Distrib. Syst. 12(3), 299–326 (2014)

    Article  Google Scholar 

  6. Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Marín-Jiménez, M.J.: Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recogn. 47(6), 2280–2292 (2014)

    Article  Google Scholar 

  7. Gomez-Romero, J., Patricio, M.A., García, J., Molina, J.M.: Ontology-based context representation and reasoning for object tracking and scene interpretation in video. Expert Syst. Appl. 38(6), 7494–7510 (2011)

    Article  Google Scholar 

  8. Neuhaus, H., Compton, M.: The semantic sensor network ontology. In: AGILE Workshop on Challenges in Geospatial Data Harmonisation, Hannover, Germany, pp. 1–33 (2009)

    Google Scholar 

  9. Perera, C., Zaslavsky, A., Christen, P., Salehi, A., Georgakopoulos, D.: Connecting mobile things to global sensor network middleware using system-generated wrappers. In: Proceedings of the Eleventh ACM International Workshop on Data Engineering for Wireless and Mobile Access, pp. 23–30. ACM, May 2012

    Google Scholar 

  10. Haefner, K.: Evolution of Information Processing Systems: An Interdisciplinary Approach for a New Understanding of Nature and Society. Springer, Heidelberg (2011)

    Google Scholar 

  11. Henning, M.: A new approach to object-oriented middleware. IEEE Internet Comput. 8(1), 66–75 (2004)

    Article  Google Scholar 

  12. Henning, M., Spruiell, M.: Choosing middleware: why performance and scalability do (and do not) matter, 1 September 2009. http://www.zeroc.com/articles/IcePerformanceWhitePaper.pdf

  13. Kortuem, G., Kawsar, F., Fitton, D., Sundramoorthy, V.: Smart objects as building blocks for the internet of things. IEEE Internet Comput. 14(1), 44–51 (2010)

    Article  Google Scholar 

  14. Kifer, D., Ben-David, S., Gehrke, J.: Detecting change in data streams. In: Proceedings of the Thirtieth international conference on Very Large Data Bases (VLDB Endowment), vol. 30, pp. 180–191, August 2004

    Google Scholar 

  15. Le-Phuoc, D., Nguyen-Mau, H.Q., Parreira, J.X., Hauswirth, M.: A middleware framework for scalable management of linked streams. Web Semant. Sci. Serv. Agents. World Wide Web 16, 42–51 (2012)

    Article  Google Scholar 

  16. Liu, H., Jacobsen, H.A.: A-ToPSS: a publish/subscribe system supporting imperfect information processing. Proceedings of the Thirtieth International Conference on Very large Data Bases (VLDB Endowment), vol. 30, pp. 1281–1284, August 2004

    Google Scholar 

  17. Liu, G.: Distributing network services and resources in a mobile communications network. US Patent No. 5,825,759. US Patent and Trademark Office, Washington, DC (1998)

    Google Scholar 

  18. Ma, Z.: Fuzzy Database Modeling of Imprecise and Uncertain Engineering Information. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  19. Picco, G.P., Balzarotti, D., Costa, P.: Lights: a lightweight, customizable tuple space supporting context-aware applications. In Proceedings of the 2005 ACM Symposium on Applied Computing, pp. 413–419. ACM, March 2005

    Google Scholar 

  20. Pripužić, K., Žarko, I.P., Aberer, K.: Top-k/w publish/subscribe: a publish/subscribe model for continuous top-k processing over data streams. Inf. Syst. 39, 256–276 (2014)

    Article  Google Scholar 

  21. Marie, Pierrick, Desprats, Thierry, Chabridon, Sophie, Sibilla, Michelle: Extending Ambient Intelligence to the Internet of Things: New Challenges for QoC Management. In: Hervás, Ramón, Lee, Sungyoung, Nugent, Chris, Bravo, José (eds.) UCAmI 2014. LNCS, vol. 8867, pp. 224–231. Springer, Heidelberg (2014)

    Google Scholar 

  22. Nadkarni, P.: The EAV/CR model of data representation. Technical report, Center for Medical Informatics, Yale University School of Medicine (2000)

    Google Scholar 

  23. Kopetz, H.: Internet of things. In: Kopetz, H. (ed.) Real-Time Systems, pp. 307–323. Springer, New York (2011)

    Chapter  Google Scholar 

  24. Rodríguez, N.D., Cuéllar, M.P., Lilius, J., Calvo-Flores, M.D.: A fuzzy ontology for semantic modelling and recognition of human behaviour. Knowl.-Based Syst. 66, 46–60 (2014)

    Article  Google Scholar 

  25. Roggen, D., Lukowicz, P., Ferscha, A., Millán, J.D.R., Tröster, G., Chavarriaga, R.: Opportunistic human activity and context recognition. Computer 46, 36–45 (2013). IEEE Computer Society (EPFL-ARTICLE-182084)

    Google Scholar 

  26. Salehi, A.: Design and implementation of an efficient data stream processing system. Doctoral dissertation, École Polytechnique Féd’erale de Lausanne (2010)

    Google Scholar 

  27. Verissimo, P., Rodrigues, L.: Distributed Systems for System Architects, vol. 1. Springer Science & Business Media, New York (2012)

    Google Scholar 

  28. Villanueva, F.J., Villa, D., Moya, F., Barba, J., Rincón, F., Lopez, J.C.: Leightweight middleware for seamless HW-SW interoperability, with application to wireless sensor networks. In: Design, Automation & Test in Europe Conference & Exhibition (DATE 2007), pp. 1–6. IEEE, April 2007

    Google Scholar 

  29. Weiser, M.: The computer for the 21st century. Sci. Am. 265(3), 94–104 (1991)

    Article  Google Scholar 

  30. Zelkha, E., Epstein, B., Birrell, S., Dodsworth, C.: From devices to ambient intelligence. In: Digital Living Room Conference, vol. 6, June 1998

    Google Scholar 

  31. Zadeh, L.A.: Fuzzy sets. Inf. control 8(3), 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This contribution has been supported by research projects: CEATIC-2013-001, UJA2014/06/14 and TIN-2012-31263.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Medina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Medina, J., Quesada, F.J., Espinilla, M. (2015). A Lightweight Distributed Architecture to Integrate Fuzzy Relevant Objects in Real-Time Environments. In: García-Chamizo, J., Fortino, G., Ochoa, S. (eds) Ubiquitous Computing and Ambient Intelligence. Sensing, Processing, and Using Environmental Information. UCAmI 2015. Lecture Notes in Computer Science(), vol 9454. Springer, Cham. https://doi.org/10.1007/978-3-319-26401-1_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26401-1_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26400-4

  • Online ISBN: 978-3-319-26401-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics