Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9454))

Abstract

Planning efficient public transport is a key issue in modern cities. When planning a route for a bus or the line for a tram or subway it is necessary to consider the demand of the people for this service. In this work we presented a method to use existing crowdsourcing data (like Waze and OpenStreetMap) and cloud services (like Google Maps) to support a transportation network decision making process. The method is based the Dempster-Shafer Theory to model transportation demand and uses data from Waze to provide a congestion probability and data from OpenStreetMap to provide information about location of facilities such as shops, in order to predict where people may need to start or end their trip using public transportation means. The paper also presents an example about how to use this method with real data. The example shows how to analyze the current availability of public transportation stops in order to discover its weak points.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Heilig, G.K., World urbanization prospects the 2011 revision. United Nations, Department of Economic and Social Affairs (DESA), Population Division, Population Estimates and Projections Section, New York (2012)

    Google Scholar 

  2. Harrison, C., et al.: Foundations for smarter cities. IBM J. Res. Dev. 54(4), 1–16 (2010)

    Article  Google Scholar 

  3. Chourabi, H., et al. Understanding smart cities: an integrative framework. In: 45th Hawaii International Conference on System Science (HICSS), 2012. IEEE (2012)

    Google Scholar 

  4. Shafer, G.: A Mathematical Theory of Evidence, vol. 1. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  5. Piro, G., et al.: Information centric services in Smart Cities. J. Syst. Softw. 88, 169–188 (2014)

    Article  Google Scholar 

  6. Santos, L., Coutinho-Rodrigues, J., Antunes, C.H.: A web spatial decision support system for vehicle routing using Google Maps. Decis. Support Syst. 51(1), 1–9 (2011)

    Article  Google Scholar 

  7. Haklay, M., Weber, P.: Openstreetmap: User-generated street maps. IEEE Pervasive Comput. 7(4), 12–18 (2008)

    Article  Google Scholar 

  8. Neis, P., Zielstra, D., Zipf, A.: The street network evolution of crowdsourced maps: OpenStreetMap in Germany 2007–2011. Future Internet 4(1), 1–21 (2011)

    Article  Google Scholar 

  9. Ciepłuch, B., et al.: Comparison of the accuracy of OpenStreetMap for Ireland with Google Maps and Bing Maps. In: Proceedings of the Ninth International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences. University of Leicester, 20–23 July 2010

    Google Scholar 

  10. Zilske, M., Neumann, A., Nagel, K.: OpenStreetMap for traffic simulation. In: Proceedings of the 1st European State of the Map–OpenStreetMap Conference (2011)

    Google Scholar 

  11. Klug, M. CS Transport-optimisation–a solution for web-based trip optimization basing on OpenStreetMap. In: 19th ITS World Congress (2012)

    Google Scholar 

  12. Joubert, J.W. Van Heerden, Q.: Large-scale multimodal transport modelling. Part 1: Demand generation (2013)

    Google Scholar 

  13. Boye, J., et al.: Walk this way: spatial grounding for city exploration. In: Mariani, J., Rosset, S., Garnier-Rizet, M., Devillers, L. (eds.) Natural Interaction with Robots, Knowbots and Smartphones, pp. 59–67. Springer, New York (2014)

    Chapter  Google Scholar 

  14. Jacob, R., Zheng, J., Ciepłuch, B., Mooney, P., Winstanley, A.C.: Campus guidance system for international conferences based on OpenStreetMap. In: Carswell, J.D., Fotheringham, A.S., McArdle, G. (eds.) W2GIS 2009. LNCS, vol. 5886, pp. 187–198. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  15. Silva, T.H., de Melo, P.O.S.V., Viana, A.C., Almeida, J.M., Salles, J., Loureiro, A.A.F.: Traffic condition is more than colored lines on a map: characterization of waze alerts. In: Jatowt, A., Lim, E.-P., Ding, Y., Miura, A., Tezuka, T., Dias, G., Tanaka, K., Flanagin, A., Dai, B.T. (eds.) SocInfo 2013. LNCS, vol. 8238, pp. 309–318. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  16. Fire, M., et al.: Data mining opportunities in geosocial networks for improving road safety. In: IEEE 27th Convention of Electrical and Electronics Engineers in Israel (IEEEI) 2012. IEEE (2012)

    Google Scholar 

  17. Frez, J., et al.: Dealing with incomplete and uncertain context data in geographic information systems. In: Computer Supported Cooperative Work in Design (CSCWD), IEEE, Editor 2014, pp. 129–134. IEEE, Hsinchu, Taiwan (2014)

    Google Scholar 

  18. Yang, L., Wan, B.: A multimodal composite transportation network model and topological relationship building algorithm. In: International Conference on Environmental Science and Information Application Technology, 2009, ESIAT 2009. IEEE (2009)

    Google Scholar 

  19. Liu, S., et al.: Modeling and simulation on multi-mode transportation network. In: 2010 International Conference on Computer Application and System Modeling (ICCASM). IEEE (2010)

    Google Scholar 

  20. Xu, L., Gao, Z.: Bi-objective urban road transportation discrete network design problem under demand and supply uncertainty. In: IEEE International Conference on Automation and Logistics, 2008, ICAL 2008. IEEE (2008)

    Google Scholar 

  21. Castillo, E., et al.: The observability problem in traffic models: algebraic and topological methods. IEEE Trans. Intell. Transp. Syst. 9(2), 275–287 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelson Baloian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Baloian, N., Frez, J., Pino, J.A., Zurita, G. (2015). Efficient Planning of Urban Public Transportation Networks. In: García-Chamizo, J., Fortino, G., Ochoa, S. (eds) Ubiquitous Computing and Ambient Intelligence. Sensing, Processing, and Using Environmental Information. UCAmI 2015. Lecture Notes in Computer Science(), vol 9454. Springer, Cham. https://doi.org/10.1007/978-3-319-26401-1_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26401-1_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26400-4

  • Online ISBN: 978-3-319-26401-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics