Skip to main content

CFD Modeling of a Mixed Mode Boosted GDI Engine and Performance Optimization for the Avoidance of Knocking

  • Conference paper
  • First Online:
Simulation and Modeling Methodologies, Technologies and Applications

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 402))

  • 860 Accesses

Abstract

The paper applies simulation techniques for the prediction and optimization of the thermo-fluid-dynamic phenomena characterizing the energy conversion process in a GDI engine. The 3D CFD model validation is realized on the ground of experimental measurements of in-cylinder pressure cycles and optical images collected within the combustion chamber. The model comprehends properly developed submodels for the spray dynamics and its impingement over walls. This last is particularly important due to the nature of the mixture formation mode, being wall-guided. Both homogeneous stoichiometric and lean stratified charge operations are considered. In the case of stoichiometric mixture, the possible occurrence of knocking is also accounted for by means of a submodel able to reproduce the preflame chemical activity. The CFD tool is finally included in a properly formulated optimization problem aimed at minimizing the engine-specific fuel consumption with the avoidance of knocking through a non-evolutionary algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Carling, R.W.: Predictive Simulation of Combustion Engine Performance in an Evolving Fuel Environment. Sandia National Laboratories (2010)

    Google Scholar 

  2. Thévenin, D., Janiga, G. (eds.): Optimization and Computational Fluid Dynamics. Springer, Berlin (2008)

    MATH  Google Scholar 

  3. Shi, Y., Ge, H.W., Reitz, R.D.: Computational Optimization of Internal Combustion Engines. Springer, London (2011)

    Book  Google Scholar 

  4. Alkidas, A.C.: Combustion advancements in gasoline engines. Energy Convers. Manag. 48, 2751–2761 (2007)

    Article  Google Scholar 

  5. Taylor, A.M.K.P.: Science review of internal combustion engines. Energy Policy 36(12), 4657–4667 (2008)

    Article  Google Scholar 

  6. Zhao, H.: Advanced direct injection combustion engine technologies and development, Vol.1, Gasoline and Engines. Woodhead Publishing Limited (2010)

    Google Scholar 

  7. Shim, Y.S., Choi, G.M., Kim, D.J.: Numerical and experimental study on effect of wall geometry on wall impingement process of hollow cone fuel spray under various ambient conditions. Int. J. Multiph. Flow 35, 885–895 (2009)

    Article  Google Scholar 

  8. Wang, C., Xu, H., Herreros, J.M., Wang, J., Crancknell, R.: Impact of fuel and injection system on particle emissions from a GDI engine. Appl. Energy 132, 178–191 (2014)

    Article  Google Scholar 

  9. Ashgriz, N. (ed.): Handbook of Atomization and Sprays—Theory and Applications. Springer, New York (2011)

    Google Scholar 

  10. Kuhnke, D.: Spray wall interaction modeling by dimensionless data analysis. Ph.D. thesis, Technische Universität Darmstadt (2004)

    Google Scholar 

  11. Drake, M.C., Haworth, D.C.: Advanced gasoline engine development using optical diagnostic and numerical modeling. Proc. Combust. Inst. 31, 99–124 (2007)

    Article  Google Scholar 

  12. Costa, M., Sorge, U., Allocca, L.: CFD optimization for GDI spray model tuning and enhancement of engine performance. Adv. Eng. Softw. 49, 43–53 (2012)

    Article  Google Scholar 

  13. Zhen, X., Wang, Y., Xu, S., Zhu, Y., Tao, C., Xu, T., Song, M.: The engine knock analysis—An overview. Appl. Energy 92, 628–636 (2012)

    Article  Google Scholar 

  14. Stan, C.: Direct Injection Systems for Spark-Ignition and Compression-Ignition Engines. SAE Publication, Warrendale (2000)

    Google Scholar 

  15. Zhao, H., Ladommatos, N.: Engine Combustion Instrumentation and Diagnostics. SAE Int. Inc, Warrendale (2001)

    Google Scholar 

  16. https://www.avl.com/web/ast/fire

  17. Ramos, J. I.: Internal Combustion Engine Modelling, CRC Press, New york, (1989)

    Google Scholar 

  18. Huh, K.Y., Gosman, A.D.: A phenomenological model of diesel spray atomization. In: International Conference on Multiphase Flows, Tsukuba, Japan (1991)

    Google Scholar 

  19. O’Rourke, P.J., Bracco, F.V.: Modeling of Drop Interactions in Thick Sprays and A Comparison With Experiments. IMECHE, London (1980)

    Google Scholar 

  20. Nordin, W. H.: Complex modeling of diesel spray combustion. PhD Thesis, Chalmers University of Technology (2001)

    Google Scholar 

  21. Dukowicz, J. K.: Quasi-steady droplet change in the presence of convection, informal report Los Alamos Scientific Laboratory. Los Alamos Report LA7997-MS (1979)

    Google Scholar 

  22. Nelder, J.A., Mead, R.: A Simplex method for function minimization. Computer Journal 7, 308–313 (1965)

    Article  MATH  Google Scholar 

  23. Costa, M., Marchitto, L., Merola, S.S., Sorge, U.: Study of mixture formation and early flame development in a research GDI engine through numerical simulation and UV-digital imaging. Energy 77, 88–96 (2014)

    Article  Google Scholar 

  24. Mundo, C., Sommerfeld, M., Tropea, C.: Droplet-Wall collisions: experimental studies of the deformation and breakup process. Int. J. Multiph. Flows 21(2), 151–173 (1995)

    Article  MATH  Google Scholar 

  25. Wruck, N.M., Renz, U., Transient phase‐change of droplets impacting on a hot wall. Transient phenomena in multiphase and multicomponent systems: Research report, pp. 210–226 (2000)

    Google Scholar 

  26. Colin, O., Benkenida, A., Angelberger, C.: 3D Modeling of mixing, ignition and combustion phenomena in highly stratified gasoline engines. Oil. Gas. Sci. Technol.—Rev. IFP Energies Nouvelles, 58, pp. 47–62 (2003)

    Google Scholar 

  27. Zeldovich, Y.B., Sadovnikov, P.Y., Frank-Kamenetskii, D.A.: Oxidation of nitrogen in combustion. Trans: by M. Shelef, Academy of sciences of USSR. Institute of Chemical Physics, Moscow-Leningrad, (1947)

    Google Scholar 

  28. Halstead, M.P., Kirsch, L.J., Quinn, C.P.: The auto-ignition of hydrocarbon fuel at high temperatures and pressures-fitting of a mathematical model. Combust. Flame 30, 45–60 (1977)

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by the government funding PON 01_1517: Innovative methodologies for the development of automotive propulsion systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michela Costa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Costa, M., Sorge, U., Sementa, P., Vaglieco, B.M. (2015). CFD Modeling of a Mixed Mode Boosted GDI Engine and Performance Optimization for the Avoidance of Knocking. In: Obaidat, M., Ören, T., Kacprzyk, J., Filipe, J. (eds) Simulation and Modeling Methodologies, Technologies and Applications . Advances in Intelligent Systems and Computing, vol 402. Springer, Cham. https://doi.org/10.1007/978-3-319-26470-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26470-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26469-1

  • Online ISBN: 978-3-319-26470-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics