Skip to main content

Analysis of Fractional-order Point Reactor Kinetics Model with Adiabatic Temperature Feedback for Nuclear Reactor with Subdiffusive Neutron Transport

  • Conference paper
  • First Online:
Simulation and Modeling Methodologies, Technologies and Applications

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 402))

Abstract

In this paper, a fractional-order nonlinear model is developed for the nuclear reactor with subdiffusive neutron transport. The proposed fractional-order point reactor kinetics model is a system of three coupled, nonlinear differential equations. The model represents subprompt critical condition. The nonlinearity in the model is due to the adiabatic temperature feedback of reactivity. This model originates from the fact that neutron transport inside the reactor core is subdiffusion and should be better modeled using fractional-order differential equations. The proposed fractional-order model is analyzed for step and sinusoidal reactivity inputs. The stiff system of differential equations is solved numerically with Adams-Bashforth-Moulton method. The proposed model is stable with self-limitting power excursions. The issue of convergence of this method for the proposed model for different values of fractional derivative order is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Duderstadt, J.J., Hamilton, L.J.: Nuclear Reactor Analysis. Wiley, New York (1976)

    Google Scholar 

  2. Glasstone, S., Sesonske, A.: Nuclear Reactor Engineering: Vol. 1. CBS Publishers & Distributors, Chennai (2002)

    Google Scholar 

  3. Beckurts, K.H., Wirtz, K.: Neutron Physics. Springer, New York (1964)

    Book  MATH  Google Scholar 

  4. Meghreblian, R.V., Holmes, D.K.: Reactor Analysis. McGraw-Hill Book Company, New York (1960)

    Google Scholar 

  5. Espinosa-Paredes, G., Morales-Sandoval, J.B., Vázquez-Rodríguez, R., Espinosa-Martínez, E.G.: Constitutive laws for the neutron transport current. Ann. Nucl. Energy 35, 1963–1967 (2008)

    Article  Google Scholar 

  6. Vyawahare, V.A., Nataraj, P.S.V.: Modeling neutron transport in a nuclear reactor as subdiffusion: The neutron fractional-order telegraph equation. In: The 4th IFAC Workshop on Fractional Differentiation and its Applications, Badajoz, Spain (2010)

    Google Scholar 

  7. Vyawahare, V.A., Nataraj, P.S.V.: Fractional-order modeling of neutron transport in a nuclear reactor. Appl. Math. Model. 37, 9747–9767 (2013)

    Article  MathSciNet  Google Scholar 

  8. Compte, A., Metzler, R.: The generalized Cattaneo equation for the description of anomalous transport processes. J. Phys. A Math. Gen. 30, 7277–7289 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Vyawahare, V.A., Nataraj, P.S.V.: Development and analysis of the fractional point reactor kinetics model for a nuclear reactor with slab geometry. In: The 5th IFAC Workshop on Fractional Differentiation and its Applications, Nanjing, China (2012)

    Google Scholar 

  10. Vyawahare, V.A., Nataraj, P.S.V.: Development and analysis of some versions of the fractional-order point reactor kinetics model for a nuclear reactor with slab geometry. Commun. Nonlinear Sci. Numer. Simul. 18, 1840–1856 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Gordon and Breach Science Publishers, Philadelphia (1997)

    Google Scholar 

  12. Das, S.: Functional Fractional Calculus for System Identification and Controls. Springer, New York (2011)

    Book  Google Scholar 

  13. Magin, R.L.: Fractional Calculus in Bioengineering. Begell House Publishers, Redding (2006)

    Google Scholar 

  14. Monje, C.A., Chen, Y.Q., Vinagre, B.M., Xue, D., Feliu, V.: Fractional-order Systems and Control: Fundamentals and Applications. Springer, London (2010)

    Book  Google Scholar 

  15. Machado, J.T., Kiryakova, V., Mainardi, F.: Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16, 1140–1153 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hetrick, D.L.: Dynamics of Nuclear Reactors. American Nuclear Society, Illinois (1993)

    Google Scholar 

  17. Espinosa-Paredes, G., del Valle-Gallegos, E., Nún̄ez-Carrera, A., Polo-Labarrios, M.A., Espinosa-Martínez, E.G., Vázquez-Rodríguez, R.: Fractional neutron point kinetics equation with newtonian temperature feedback effects. Prog. Nucl. Energy 73, 96–101 (2014)

    Google Scholar 

  18. Espinosa-Paredes, G., Polo-Labarrios, M.A., Espinosa-Martínez, E.G., del Valle-Gallegos, E.: Fractional neutron point kinetics equations for nuclear reactor dynamics. Ann. Nucl. Energy 38, 307–330 (2011)

    Article  Google Scholar 

  19. Vyawahare, V.A., Nataraj, P.S.V.: Development and analysis of fractional-order Nordheim-Fuchs model for nuclear reactor. In: Daftardar-Gejji, V. (ed.) Fractional Calculus: Theory and Applications. Narosa Publishing House, Chennai (2014)

    Google Scholar 

  20. Klages, R., Radons, G., Sokolov, I.M. (eds.): Anomalous Transport. WILEY-VCH Verlag GmbH & Co., New York (2008)

    Google Scholar 

  21. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Das, S., Biswas, B.B.: Fractional divergence for neutron flux profile in nuclear reactor. Int. J. Nucl. Energy Sci. Technol. 3, 139–159 (2007)

    Article  Google Scholar 

  23. Sardar, T., Ray, S.S., Bera, R., Biswas, B., Das, S.: The solution of coupled fractional neutron diffusion equations with delayed neutrons. Int. J. Nucl. Energy Sci. Technol. 5, 105–113 (2010)

    Article  Google Scholar 

  24. Das, S., Das, S., Gupta, A.: Fractional order modeling of a PHWR under step-back condition and control of its global power with a robust \({P} {I}^\lambda {D}^\mu \) controller. IEEE Trans. Nucl. Sci. 58, 2431–2441 (2011)

    Article  Google Scholar 

  25. Kadem, A.: The fractional transport equation: an analytical solution and a spectral approximation by Chebyshev polynomials. Appl. Sci. 11, 78–90 (2009)

    MathSciNet  MATH  Google Scholar 

  26. Kadem, A., Baleanu, D.: Analytical method based on Walsh function combined with orthogonal polynomial for fractional transport equation. Commun. Nonlinear Sci. Numer. Simul. 15, 491–501 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nahla, A.A.: An analytical solution for the point reactor kinetics equations with one group of delayed neutrons and the adiabatic feedback model. Prog. Nucl. Energy 51, 124–128 (2009)

    Article  Google Scholar 

  28. Mathworks: MATLAB Manual. The Mathworks Inc., MATLAB version 7.1 (R14), USA (2005)

    Google Scholar 

  29. Aboanber, A.E., Nahla, A.A.: On pade’ approximations to the exponential function and application to the point kinetics equations. Prog. Nucl. Energy 44, 347–368 (2004)

    Article  Google Scholar 

  30. Daftardar-Gejji, V., Jafari, H.: Adomian decomposition: a tool for solving a system of fractional differential equations. J. Math. Anal. Appl. 301, 508–518 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Odibat, Z., Momani, S.: Application of Variational Iteration Method to nonlinear differential equations of fractional order. Int. J. Nonlinear Sci. Numer. Simul. 1, 15–27 (2006)

    Google Scholar 

  32. Ruskeepaa, H.: Mathematica Navigator: Mathematics Statistics and Graphics. Academic Press, Amsterdam (2009)

    Google Scholar 

  33. Diethelm, K.: The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type. Springer, Berlin (2010)

    Book  Google Scholar 

  34. Diethelm, K., Ford, N.J., Freed, A.D.: A Predictor-Corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29, 3–22 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  35. Stacey, W.M.: Nuclear Reactor Physics. WILEY-VCH Verlag GmbH & Co., Weinheim (2007)

    Book  Google Scholar 

  36. Ogata, K.: Modern Control Engineering. Prentice-Hall, Englewood Cliffs (2002)

    Google Scholar 

  37. Diethelm, K., Ford, N.J., Freed, A.D., Luchko, Y.: Algorithms for the fractional calculus: a selection of numerical methods. Comput. Methods Appl. Mech. Eng. 194, 743–773 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  38. Connolly, J.A.: The numerical solution of fractional and distributed order differential equations. PhD thesis, University of Liverpool, UK (2004)

    Google Scholar 

  39. Li, C., Peng, G.: Chaos in Chen’s system with a fractional order. Chaos Solitons Fractals 22, 443–450 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  40. Tavazoei, M.S., Haeri, M.: A necessary condition for double scroll attractor existence in fractional-order systems. Phys. Lett. A 367, 102–113 (2007)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishwesh A. Vyawahare .

Editor information

Editors and Affiliations

Appendix: Fractional Second-order Adams-Bashforth-Moulton Method

Appendix: Fractional Second-order Adams-Bashforth-Moulton Method

Here the fractional second-order Adams-Bashforth-Moulton (ABM) method which is used in Sect. 4 is explained in brief. The main computational steps involved in the algorithm are presented here for the equispaced grid points. For details, refer to [33, 37, 38]. It is an extension of the classical ABM method used to numerically solve the first-order ODEs. It comes in the category of the so-called PECE (Predict, Evaluate, Correct, Evaluate) type since it involves calculation of the predictor value which is in turn used to compute the corrector value. This method and its variants are popular in the field of fractional calculus and applied areas [39, 40]. The algorithm explained below is for a single fractional differential equation. However, it can be easily modified to handle a system of FDEs.

Consider the single term FDE with Caputo FD

$$\begin{aligned} _{0}D^{\alpha }_{t}y(t) = f(t,y(t)), \end{aligned}$$
(21)

where \(\alpha \in \mathbb {R}^+\) and with the appropriate initial conditions:

$$\begin{aligned} D^k_{t}y(0) = y_0^{(k)}, \quad k = 0, 1, \ldots , m-1, \end{aligned}$$
(22)

where, \(m=\lceil \alpha \rceil \) is the ceil function. The equivalent Volterra integral equation is

$$\begin{aligned} y(t) = \sum _{k=0}^{m-1}\frac{t^k}{k!} D^k_{t} y(0) + \frac{1}{\varGamma (\alpha )} \int _0^t (t-\tau )^{\alpha -1} f(\tau ,y(\tau )) d\tau . \end{aligned}$$
(23)

The integration limits from 0 to t imply the nonlocal structure of the fractional derivatives.

The next step is to use the product trapezoidal quadrature formula to replace the integral in (23). We approximate the following integral

$$\begin{aligned} \int _0^{t_{k+1}} (t_{k+1}-\tau )^{\alpha -1} g(\tau ) d\tau , \end{aligned}$$
(24)

as

$$\begin{aligned} \int _0^{t_{k+1}} (t_{k+1}-\tau )^{\alpha -1} g_{k+1}(\tau ) d\tau , \end{aligned}$$
(25)

where \(\tilde{g}_{k+1} \equiv \) piecewise linear interpolation for g(t) with grid points at \(t_j,\) \( j = 0, 1, 2, \ldots , k+1\). Thus we can write the integral (25) as

$$\begin{aligned} \int _0^{t_{k+1}} (t_{k+1}-\tau )^{\alpha -1} g_{k+1}(\tau ) d\tau = \sum _{j=0}^{k+1} a_{j, k+1}g(t_j), \end{aligned}$$
(26)

for the equispaced nodes (\(t_j = jh\) with some fixed step-size h). The values of \(a_{j, k+1}\) are given for \(j=0\) as

$$\begin{aligned} \frac{h^\alpha }{\alpha (\alpha +1)} \left( k^{\alpha +1} - (k-\alpha )(k+1)^\alpha \right) , \end{aligned}$$

for \(1 \le j \le k\) as

$$\begin{aligned} \left( \frac{h^\alpha }{\alpha (\alpha +1)}\right) (d), \end{aligned}$$

where

$$\begin{aligned} d = (k-j+2)^{\alpha +1} + (k-j)^{\alpha +1} - 2(k-j+1)^{\alpha +1}, \end{aligned}$$

and for \(j = k + 1\) as

$$\begin{aligned} \frac{h^\alpha }{\alpha (\alpha +1)}. \end{aligned}$$

So the corrector formula is

$$\begin{aligned} y_{k+1} =&\sum _{j=0}^{m-1}\frac{t_{k+1}^j}{j!} y_0^{(j)} \nonumber \\&+ \frac{1}{\varGamma (\alpha )} \sum _{j=0}^k a_{j, k+1} f(t_j,y_j) \\&+ \frac{1}{\varGamma (\alpha )} \left( a_{k+1,k+1} f(t_{k+1},y^P_{k+1})\right) \nonumber , \end{aligned}$$
(27)

where now the predictor \(y^P_{k+1}\) is evaluated as

$$\begin{aligned} y^P_{k+1} = \sum _{j=0}^{m-1}\frac{t_{k+1}^j}{j!} y_0^{(j)} + \frac{1}{\varGamma (\alpha )} \sum _{j=0}^k b_{j, k+1} f(t_j,y_j), \end{aligned}$$
(28)

with

$$\begin{aligned} b_{j, k+1} = \frac{h^\alpha }{\alpha } \left( (k+1-j)^\alpha - (k-j)^\alpha \right) . \end{aligned}$$
(29)

For \(0<\alpha <1\), the predictor and corrector expressions get modified as

$$\begin{aligned} y^P_{k+1} = y_0 + \frac{1}{\varGamma (\alpha )} \sum _{j=0}^k b_{j, k+1} f(t_j,y_j), \end{aligned}$$
(30)

and

$$\begin{aligned} y_{k+1} =&\, y_0 + \frac{1}{\varGamma (\alpha )} \sum _{j=0}^k a_{j, k+1} f(t_j,y_j) \nonumber \\&+ \frac{1}{\varGamma (\alpha )} \left( a_{k+1,k+1} f(t_{k+1},y^P_{k+1})\right) . \end{aligned}$$
(31)

As already mentioned in Sect. 4, the convergence of this algorithm deteriorates as \(\alpha \rightarrow 0\). This algorithm was coded in MATLAB.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Vyawahare, V.A., Nataraj, P.S.V. (2015). Analysis of Fractional-order Point Reactor Kinetics Model with Adiabatic Temperature Feedback for Nuclear Reactor with Subdiffusive Neutron Transport. In: Obaidat, M., Ören, T., Kacprzyk, J., Filipe, J. (eds) Simulation and Modeling Methodologies, Technologies and Applications . Advances in Intelligent Systems and Computing, vol 402. Springer, Cham. https://doi.org/10.1007/978-3-319-26470-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26470-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26469-1

  • Online ISBN: 978-3-319-26470-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics