Skip to main content

Toward a Theory of Intelligent Complex Systems: From Symbolic AI to Embodied and Evolutionary AI

  • Chapter
  • First Online:
Fundamental Issues of Artificial Intelligence

Part of the book series: Synthese Library ((SYLI,volume 376))

Abstract

In the twentieth century, AI (artificial Intelligence) arose along with Turing’s theory of computability. AI-research was focused on using symbolic representations in computer programs to model human cognitive abilities. The final goal was a complete symbolic representation of human intelligence in the sense of Turing’s AI-test. Actually, human intelligence is only a special example of problem solving abilities which have evolved during biological evolution. In embodied AI and robotics, the emergence of intelligence is explained by bodily behavior and interaction with the environment. But, intelligence is not reserved to single organisms and brains. In a technical coevolution, computational networks grow together with technical and societal infrastructures generating automated and intelligent activities of cyberphysical systems. The article argues for a unified theory of intelligent complex systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • acatech (Ed.). (2011). Cyberphysical systems. acatech position (acatech = National Academy of Science and Technology). Berlin: Springer.

    Google Scholar 

  • Albert, R., & Barabási, A.-L. (2002). Statistical mechanics of complex networks. Reviews of Modern Physics, 74(1), 47–97.

    Article  Google Scholar 

  • Balch, T., & Parker, L. (Eds.). (2002). Robot teams: From diversity to polymorphism. Wellesley: A. K. Peters.

    Google Scholar 

  • Bekey, G. L. (2005). Autonomous robots. From biological inspiration to implementation and control. Cambridge, MA: MIT Press.

    Google Scholar 

  • Bellman, K. L. (2005). Self-conscious modeling. IT – Information Technology, 4, 188–194.

    Article  Google Scholar 

  • Berners-Lee, T. (1999). Weaving the web: The original design and ultimate destiny of the world wide web by the inventor. San Francisco: Harper Collins.

    Google Scholar 

  • Braitenberg, V., & Radermacher, F. J. (Eds.). (2007). Interdisciplinary approaches to a new understanding of cognition and consciousness. Universitätsverlag Ulm: Ulm.

    Google Scholar 

  • Brooks, R. A. (1999). Cambrian intelligence: The early history of the new AI. Cambridge, MA: The MIT Press.

    Book  Google Scholar 

  • Chalmers, D. (2010). The character of consciousness. Oxford: Oxford University Press.

    Book  Google Scholar 

  • CoTeSys. (2006–2011). is funded by the German Research Council DFG as a research cluster of excellence within the “excellence initiative” from 2006–2012.

    Google Scholar 

  • Cyber-Physical Systems. Program announcements & information. The National Science Foundation, Arlington, 30 Sept 2008.

    Google Scholar 

  • Dreyfus, H. L. (1979). What computer’s can’t do – The limits of artificial intelligence. New York: Harper & Row.

    Google Scholar 

  • Dreyfus, H. L. (1982). Husserl, intentionality, and cognitive science. Cambridge, MA: MIT Press.

    Google Scholar 

  • Freeman, W. J. (2004). How and why brains create meaning from sensory information. International Journal of Bifurcation and Chaos, 14, 515–530.

    Article  Google Scholar 

  • Friederici, A. D. (2006). The neural basis of language development and its impairment. Neuron, 52, 941–952.

    Article  Google Scholar 

  • Haken, H. (1996). Principles of brain functioning. A synergetic approach to brain activity, behaviour and cognition. Berlin: Springer.

    Google Scholar 

  • Hansmann, U. (2001). Pervasive computing handbook. Berlin: Springer.

    Book  Google Scholar 

  • Hebb, D. O. (1949). The organization of the behavior. New York: Wiley.

    Google Scholar 

  • Lee, E. (2008). Cyber-physical systems: Design challenges. In University of California, Berkeley Technical Report No. UCB/EECS-2008-8.

    Google Scholar 

  • Mainzer, K. (2003). KI – Künstliche intelligenz. Grundlagen intelligenter systeme. Darmstadt: Wissenschaftliche Buchgesellschaft.

    Google Scholar 

  • Mainzer, K. (2007). Thinking in complexity. The computational dynamics of matter, mind, and mankind (5th ed.). New York: Springer.

    Google Scholar 

  • Mainzer, K. (2008a). The emergence of mind and brain: An evolutionary, computational, and philosophical approach. In R. Banerjee & B. K. Chakrabarti (Eds.), Models of brain and mind. Physical, computational and psychological approaches (pp. 115–132). Amsterdam: Elsevier.

    Google Scholar 

  • Mainzer, K. (2008b). Organic computing and complex dynamical systems. Conceptual foundations and interdisciplinary perspectives. In R. P. Würtz (Ed.), Organic computing (pp. 105–122). Berlin: Springer.

    Google Scholar 

  • Mainzer, K. (2009). From embodied mind to embodied robotics: Humanities and system theoretical aspects. Journal of Physiology, Paris, 103, 296–304.

    Article  Google Scholar 

  • Mainzer, K. (2010). Leben als Maschine? Von der Systembiologie zur Robotik und Künstlichen Intelligenz. Paderborn: Mentis.

    Google Scholar 

  • Mainzer, K. (2014). Die Berechnung der Welt. Von der Weltformel zu Big Data. München: C.H. Beck.

    Book  Google Scholar 

  • Mainzer, K., & Chua, L. O. (2011). The universe as automaton. From simplicity and symmetry to complexity. Berlin: Springer.

    Google Scholar 

  • Mainzer, K., & Chua, L. O. (2013). Local activity principle. London: Imperial College Press.

    Book  Google Scholar 

  • Mataric, M., Sukhatme, G., & Ostergaard, E. (2003). Multi-robot task allocation in uncertain environments. Autonomous Robots, 14(2–3), 253–261.

    Google Scholar 

  • Merleau-Ponty, M. (1962). Phenomenology of perception. London: Kegan Paul.

    Google Scholar 

  • Nolfi, S., & Floreano, D. (2001). Evolutionary robotics. The biology, intelligence, and technology of self-organizing machines. Cambridge, MA: MIT Press.

    Google Scholar 

  • Pfeifer, R., & Scheier, C. (2001). Understanding intelligence. Cambridge, MA: MIT Press.

    Book  Google Scholar 

  • Scott, A. (2003). Nonlinear science. Emergence and dynamics of coherent structures. Oxford: Oxford University Press.

    Google Scholar 

  • Shuji Kajita. (2007). Humanoide roboter. Theorie und Technik des Künstlichen Menschen. Berlin: Aka GmbH.

    Google Scholar 

  • Singer, W. (1994). The role of synchrony in neocortical processing and synaptic plasticity. In E. Domany, L. van Hemmen, & K. Schulten (Eds.), Models of neural networks II. Berlin: Springer.

    Google Scholar 

  • Tarski, A. (1935). Der Wahrheitsbegriff in den formalisierten Sprachen. Studia Philosophica, 1, 261–405.

    Google Scholar 

  • Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic robotics. Cambridge, MA: MIT Press.

    Google Scholar 

  • Wedde, H. J., Lehnhoff, S., Rehtanz, C., & Krause, O. (2008). Von eingebetteten Systemen zu Cyber-Physical Systems. Eine neue Forschungsdimension für verteilte eingebettete Realzeitsysteme. In Pearl 2008 – Informatik Aktuell. Aktuelle Anwendungen in Technik und Wirtschaft 2007 12.

    Google Scholar 

  • Weiser, M. (1991). The computer for the 21st century. Scientific American, 9, 66–75.

    Google Scholar 

  • Wilson, E. O. (2000). Sociobiology: The new synthesis (25th ed.). Cambridge, MA: Harvard University Press.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mainzer, K. (2016). Toward a Theory of Intelligent Complex Systems: From Symbolic AI to Embodied and Evolutionary AI. In: Müller, V.C. (eds) Fundamental Issues of Artificial Intelligence. Synthese Library, vol 376. Springer, Cham. https://doi.org/10.1007/978-3-319-26485-1_15

Download citation

Publish with us

Policies and ethics