Skip to main content

Arm Muscular Effort Estimation from Images Using Computer Vision and Machine Learning

  • Conference paper
  • First Online:
Ambient Intelligence for Health (AmIHEALTH 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9456))

Included in the following conference series:

Abstract

A problem of great interest in disciplines like occupational medicine, ergonomics, and sports, is the measurement of biomechanical variables involved in human movement and balance such as internal muscle forces and joint torques. This problem is solved by a two-step process: data capturing using impractical, intrusive and expensive devices that is then used as input in complex models for obtaining the biomechanical variables of interest. In this work we present a first step towards capturing input data through a more automated, non-intrusive and economic process, specifically weight held by an arm subject to isometric contraction as a measure of muscular effort. We do so, by processing RGB images of the arm with computer vision (Local Binary Patterns and Color Histograms) and estimating the effort with machine learning algorithms (SVM and Random Forests). In the best case we obtained an FMeasure \(=70.68\,\%\), an Accuracy \(=71.66\,\%\) and a mean absolute error in the predicted weights of 554.16 grs (over 3 possible levels of effort). Considering the difficulty of the problem, it is enlightening to achieve over random results indicating that, despite the simplicity of the approach, it is possible to extract meaningful information for the predictive task. Moreover, the simplicity of the approach suggests many lines of further improvements: on the image capturing side with other kind of images; on the feature extraction side with more sophisticated algorithms and features; and on the knowledge extraction side with more sophisticated learning algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asus xtion. http://www.asus.com/latin/Multimedia/Xtion/

  2. Microsoft kinect sensor. http://www.xbox.com/es-ES/Kinect

  3. Johnson, L.A., Fuglevand, A.J.: Evaluation of probabilistic methods to predict muscle activity: implications for neuroprosthetics. J. Neural Eng. 6(5), 055008 (2009)

    Article  Google Scholar 

  4. Chaffin, D.B., Andersson, G.B.J., et al.: Occupational Biomechanics. Wiley, New York (1984)

    Google Scholar 

  5. Bauer, A., Paclet, F., Cahouet, V., Dicko, A.H., Palombi, O., Faure, F., Troccaz, J., et al.: Interactive visualization of muscle activity during limb movements: towards enhanced anatomy learning. In: Eurographics Workshop on VCBM (2014)

    Google Scholar 

  6. Carli, M., Goffredo, M., Schmid, M., Neri, A.: Study of muscular deformation based on surface slope estimation. In: Electronic Imaging, p. 60640U. International Society for Optics and Photonics (2006)

    Google Scholar 

  7. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  8. Matheson Rittenhouse, D., Abdullah, H.A., John Runciman, R., Basir, O.: A neural network model for reconstructing emg signals from eight shoulder muscles: consequences for rehabilitation robotics and biofeedback. J. Biomech. 39(10), 1924–1932 (2006)

    Article  Google Scholar 

  9. Davide, Z., Andrea, G., Vincent, T.: The use of optical flow to characterize muscle contraction. J. Neurosci. Methods 110(1), 65–80 (2001)

    Google Scholar 

  10. Dutta, T.: Evaluation of the kinect\(\rm ^{TM}\) sensor for 3-d kinematic measurement in the workplace. Appl. Ergonomics 43(4), 645–649 (2012)

    Article  Google Scholar 

  11. Park, S.I., Hodgins, J.K.: Data-driven modeling of skin and muscle deformation. ACM TOG 27(3), 96 (2008)

    Article  Google Scholar 

  12. Assassi, L., Becker, M., Magnenat Thalmann, N.: Dynamic skin deformation based on biomechanical modeling. In: Proceedings of the 25th CASA, vol. 2 (2012)

    Google Scholar 

  13. Laursen, B., Søgaard, K., Sjøgaard, G.: Biomechanical model predicting electromyographic activity in three shoulder muscles from 3d kinematics and external forces during cleaning work. Clin. Biomech. 18(4), 287–295 (2003)

    Article  Google Scholar 

  14. Leo, B.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  15. Marzieh, M., Ling, W., Qin, L., Yaxiong, L., Jiankang, H., Dichen, L., Zhongmin, J.: Muscle activity prediction using wavelet neural network. In: ICWAPR 2013, pp. 241–246. IEEE (2013)

    Google Scholar 

  16. McGinnis, P.: Biomechanics of Sport and Exercise. Human Kinetics, USA (2013)

    Google Scholar 

  17. Michela, G., Marco, C., Silvia, C., Daniele, B., Alessandro, N., Tommaso, D.: Evaluation of skin and muscular deformations in a non-rigid motion analysis. In: Medical Imaging, pp. 535–541. International Society for Optics and Photonics (2005)

    Google Scholar 

  18. Neumann, T., Varanasi, K., Hasler, N., Wacker, M., Magnor, M., Theobalt, C.: Capture and statistical modeling of arm-muscle deformations. In: Computer Graphics Forum, vol. 32, pp. 285–294. Wiley Online Library (2013)

    Google Scholar 

  19. Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recogn. 29(1), 51–59 (1996)

    Article  Google Scholar 

  20. Chapelle, O., Haffner, P., Vapnik, V.N.: Support vector machines for histogram-based image classification. IEEE Trans. Neural Netw. 10(5), 1055–1064 (1999)

    Article  Google Scholar 

  21. Pandy, M.G., Barr, R.E.: Biomechanics of the musculoskeletal system. In: Standard Handbook of Biomedical Engineering and Design (2004)

    Google Scholar 

  22. Qi, S., Buchanan, T.S.: Electromyography as a tool to estimate muscle forces. In: Standard Handbook of Biomedical Engineering & Design (2004)

    Google Scholar 

  23. Robertini, N., Neumann, T., Varanasi, K., Theobalt, C.: Capture of arm-muscle deformations using a depth-camera. In: Proceedings of the 10th European Conference on Visual Media Production, p. 12. ACM (2013)

    Google Scholar 

  24. Sand, P., McMillan, L., Popović, J.: Continuous capture of skin deformation. ACM Trans. Graph. (TOG) 22(3), 578–586 (2003)

    Article  Google Scholar 

  25. Sd, P., Ae, P., Da, S.: Artificial neural network model for the generation of muscle activation patterns for human locomotion. J. Electromyogr. Kinesiol. 11(1), 19–30 (2001)

    Article  Google Scholar 

  26. Senanayake, S., Triloka, J., Malik, O.A., Iskandar, M.: Artificial neural network based gait patterns identification using neuromuscular signals and soft tissue deformation analysis of lower limbs muscles. In: IJCNN, pp. 3503–3510. IEEE (2014)

    Google Scholar 

  27. Shamik, S., Gang, Q., Sakti, P.: Segmentation and histogram generation using the hsv color space for image retrieval. In: ICIP, vol. 2, p. II-589. IEEE (2002)

    Google Scholar 

  28. Shrawan, K.: Biomechanics in Ergonomics. CRC Press, Boca Raton (1999)

    Google Scholar 

  29. Sifakis, E., Neverov, I., Fedkiw, R.: Automatic determination of facial muscle activations from sparse motion capture marker data. In: ACM TOG, vol. 24, pp. 417–425. ACM (2005)

    Google Scholar 

  30. Manal, K., Buchanan, T.S.: Biomechanics of human movement. In: Standard handbook of biomedical engineering & design, p. 26 (2004)

    Google Scholar 

  31. Anderson, C.V., Fuglevand, A.J.: Probability-based prediction of activity in multiple arm muscles: implications for functional electrical stimulation. J. Neurophysiol. 100(1), 482–494 (2008)

    Article  Google Scholar 

  32. Xu, X., McGorry, R.W., Lin, J.-H.: A regression model predicting isometric shoulder muscle activities from arm postures and shoulder joint moments. J. Electromyogr. Kinesiol. 24(3), 419–429 (2014)

    Article  Google Scholar 

  33. Yang, M.H., Ahuja, N.: Gaussian mixture model for human skin color and its applications in image and video databases. In: Electronic Imaging’99, pp. 458–466. International Society for Optics and Photonics (1998)

    Google Scholar 

  34. Youn, H.Q., Park, S.I., Hodgins, J.K.: A data-driven segmentation for the shoulder complex. In: Computer Graphics Forum, vol. 29, pp. 537–544. Wiley Online Library (2010)

    Google Scholar 

  35. Zoccolan, D., Torre, V.: Using optical flow to characterize sensory-motor interactions in a segment of the medicinal leech. J. Neurosci. 22(6), 2283–2298 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

We thank CONICET for the funding of the author Leandro Abraham through a doctoral grant under the supervision of Dr. Raymundo Forradellas and the thesis supervision of Dr. Facundo Bromberg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leandro Abraham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Abraham, L., Bromberg, F., Forradellas, R. (2015). Arm Muscular Effort Estimation from Images Using Computer Vision and Machine Learning. In: Bravo, J., Hervás, R., Villarreal, V. (eds) Ambient Intelligence for Health. AmIHEALTH 2015. Lecture Notes in Computer Science(), vol 9456. Springer, Cham. https://doi.org/10.1007/978-3-319-26508-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26508-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26507-0

  • Online ISBN: 978-3-319-26508-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics