Abstract
Patient blood pressure is an important vital signal to the physicians take a decision and to better understand the patient condition. In Intensive Care Units is possible monitoring the blood pressure due the fact of the patient being in continuous monitoring through bedside monitors and the use of sensors. The intensivist only have access to vital signs values when they look to the monitor or consult the values hourly collected. Most important is the sequence of the values collected, i.e., a set of highest or lowest values can signify a critical event and bring future complications to a patient as is Hypotension or Hypertension. This complications can leverage a set of dangerous diseases and side-effects. The main goal of this work is to predict the probability of a patient has a blood pressure critical event in the next hours by combining a set of patient data collected in real-time and using Data Mining classification techniques. As output the models indicate the probability (%) of a patient has a Blood Pressure Critical Event in the next hour. The achieved results showed to be very promising, presenting sensitivity around of 95 %.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Kannel, W.B.: Risk stratification in hypertension: new insights from the Framingham Study. Am. J. Hypertens. 13, 3S–10S (2000)
Portela, F., Santos, M.F., Machado, J., Abelha, A., Silva, Á., Rua, F.: Pervasive and intelligent decision support in intensive medicine – the complete picture. In: Bursa, M., Khuri, S., Renda, M.E. (eds.) ITBAM 2014. LNCS, vol. 8649, pp. 87–102. Springer, Heidelberg (2014)
Oliveira, S., Portela, F., Santos, M.F., Machado, J., Abelha, A., Silva, Á., Rua, F.: Predicting plateau pressure in intensive medicine for ventilated patients. In: Rocha, A., Correia, A.M., Costanzo, S., Reis, L.P. (eds.) New Contributions in Information Systems and Technologies, Advances in Intelligent Systems and Computing 354. AISC, vol. 354, pp. 179–188. Springer, Heidelberg (2015)
Portela, F., Santos, M.F., Machado, J., Abelha, A., Silva, Á., Rua, F.: Preventing patient cardiac arrhythmias by using data mining techniques. In: 2014 IEEE Conference on Biomedical Engineering and Sciences (2014)
Braga, P., Portela, F., Santos, M.F.: Data mining models to predict patient’s readmission in intensive care units. In: ICAART - International Conference on Agents and Artificial Intelligence (2015)
Veloso, R., Portela, F., Santos, M., Machado, J.M.F., Abelha, A., Silva, Á., Rua, F.: Real-time data mining models for predicting length of stay in intensive care units. In: KMIS 2014-International Conference on Knowledge Management and Information Sharing (2014)
Portela, F., Santos, M.F., Machado, J., Abelha, A., Silva, Á.: Pervasive and intelligent decision support in critical health care using ensembles. In: Bursa, M., Khuri, S., Renda, M.E. (eds.) ITBAM 2013. LNCS, vol. 8060, pp. 1–16. Springer, Heidelberg (2013)
NIH. http://www.nhlbi.nih.gov/health/health-topics/topics/hbp. Accessed May 2015
Wolf-Maier, K., Cooper, R.S., Banegas, J.R., Giampaoli, S., Hense, H.-W., Joffres, M., Kastarinen, M., Poulter, N., Primatesta, P., Rodríguez-Artalejo, F.: Hypertension prevalence and blood pressure levels in 6 European countries, Canada, and the United States. JAMA 289, 2363–2369 (2003)
Mancia, G., Fagard, R., Narkiewicz, K., Redon, J., Zanchetti, A., Böhm, M., Christiaens, T., Cifkova, R., De Backer, G., Dominiczak, A., Zannad, F.: 2013 ESH/ESC guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European society of hypertension (ESH) and of the European Society of Cardiology (ESC). Blood Press. 22(4), 193–278 (2013)
Mahfoud, F., Ukena, C., Kandolf, R., Kindermann, M., Böhm, M., Kindermann, I.: Blood pressure and heart rate predict outcome in patients acutely admitted with suspected myocarditis without previous heart failure. J. Hypertens. 30, 1217–1224 (2012)
Mitsa, T.: Temporal Data Mining. CRC Press, Boca Raton (2010)
Bucknall, T.K.: Medical error and decision making: learning from the past and present in intensive care. Aust. Crit. Care 23, 150–156 (2010)
Portela, F., Santos, M.F., Silva, Á., Machado, J., Abelha, A.: Enabling a pervasive approach for intelligent decision support in critical health care. Presented at HCist 2011 – International Workshop on Health and Social Care Information Systems and Technologies, Algarve, Portugal, p. 10 (2011)
Gonçalves, J.M.C., Portela, F., Santos, M.F., Silva, Á., Machado, J., Abelha, A.: Predict sepsis level in intensive medicine – data mining approach. In: Rocha, Á., Correia, A.M., Wilson, T., Stroetmann, K.A. (eds.) Advances in Information Systems and Technologies. AISC, vol. 206, pp. 201–211. Springer, Heidelberg (2013)
Oliveira, S., Portela, F., Santos, M.F., Machado, J., Abelha, A., Silva, Á., Rua, F.: Intelligent decision support to predict patient barotrauma risk in intensive care units. In: Procedia Computer Science - HCIST 2015 - Healthy and Secure People. Elsevier (2015)
Veloso, R., Portela, F., Santos, M.F., Silva, Á., Rua, F., Abelha, A., Machado, J.: A clustering approach for predicting readmissions in intensive medicine. Procedia Technol. 16, 1307–1316 (2014)
Portela, F., Veloso, R., Oliveira, S., Santos, M.F., Abelha, A., Machado, J., Silva, Á, Rua, F.: Predict hourly patient discharge probability in intensive care units using data mining. In: International Conference on Computer Science and Computational Mathematics (ICCSCM 2014). Science Society, Langkawi, Malaysia (2014). ISSN: 1513-1874
Silva, A., Cortez, P., Santos, M.F., Gornesc, L., Neves, J.: Mortality assessment in intensive care units via adverse events using artificial neural networks. Artif. Intell. Med. 36, 223–234 (2006)
Portela, F., Gago, P., Santos, M.F., Machado, J., Abelha, A., Silva, Á., Rua, F.: Implementing a pervasive real-time intelligent system for tracking critical events with intensive care patients. IJHISI – Int. J. Healthc. Inf. Syst. Inf. 8(4), 1–16. IGI Global (2013). ISSN: 1555-3396.
Silva, Á., Cortez, P., Santos, M.F., Gomes, L., Neves, J.: Rating organ failure via adverse events using data mining in the intensive care unit. Artif. Intell. Med. 43, 179–193 (2008)
Lee, P.: Design research: what is it and why do it? In: The Reboot, vol. 2013. Reboot (2012). http://thereboot.org
Lunenfeld, P., Laurel, B.: Design Research: Methods and Perspectives. MIT Press, Cambridge (2003)
Vincent, J.L., Moreno, R., Takala, J., Willatts, S., De Mendonca, A., Bruining, H., Reinhart, C.K., Suter, P.M., Thijs, L.G.: The SOFA (sepsis-related organ failure assessment) score to describe organ dysfunction/failure. Intensive Care Med. 22, 707–710 (1996)
Guy, W.: ECDEU Assessment Manual for Psychopharmacology. US Department of Health, Education, and Welfare, Public Health Service, Alcohol, Drug Abuse, and Mental Health Administration, National Institute of Mental Health, Psychopharmacology Research Branch, Division of Extramural Research Program, Rockville (1976)
Guy, W.: Clinical global impressions (CGI) scale. In: Psychiatric Measures. APA, Washington, D.C. (2000)
Acknowledgments
This work has been supported by FCT - Fundação para a Ciência e Tecnologia within the Project Scope UID/CEC/00319/2013 and the contract PTDC/EEI-SII/1302/2012 (INTCare II).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Portela, F., Santos, M.F., Machado, J., Abelha, A., Rua, F., Silva, Á. (2015). Real-Time Decision Support Using Data Mining to Predict Blood Pressure Critical Events in Intensive Medicine Patients. In: Bravo, J., Hervás, R., Villarreal, V. (eds) Ambient Intelligence for Health. AmIHEALTH 2015. Lecture Notes in Computer Science(), vol 9456. Springer, Cham. https://doi.org/10.1007/978-3-319-26508-7_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-26508-7_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-26507-0
Online ISBN: 978-3-319-26508-7
eBook Packages: Computer ScienceComputer Science (R0)