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Abstract. We develop an efficient parallel algorithm for answering shortest-
path queries in planar graphs and implement it on a multi-node CPU/GPU
clusters. The algorithm uses a divide-and-conquer approach for decom-
posing the input graph into small and roughly equal subgraphs and con-
structs a distributed data structure containing shortest distances within
each of those subgraphs and between their boundary vertices. For a pla-
nar graph with n vertices, that data structure needs O(n) storage per
processor and allows queries to be answered in O(n1/4) time.

Keywords: shortest path problems, graph algorithms, distributed com-
puting, GPU computing, graph partitioning

1 Introduction

Finding shortest paths (SPs) in graphs has applications in transportation, social
network analysis, network routing, and robotics, among others. The problem
asks for a path of shortest length between one or more pairs of vertices. There
are many algorithm for solving SP problems sequentially. Dijkstra’s algorithm [2]
finds the distances between a source vertex v and all other vertices of the graph
in O(m log n) time, where n and m are the numbers of the vertices and edges
of the graph, respectively. It can also be used to find efficiently the distance
between a pair of vertices. This algorithm is nearly optimal (within a logarithmic
factor), but has irregular structure, which makes it hard to implement efficiently
in parallel. Floyd-Warshall’s algorithm, on the other hand, finds the distances
between all pairs of vertices of the graph inO(n3) time, which is efficient for dense
(m = Θ(n2)) graphs, has a regular structure good for parallel implementation,
but is inefficient for sparse (m = O(n)) graphs such as planar graphs.

In this paper we are considering the query version of the problem. It asks
to construct a data structure that will allow to answer any subsequent distance
query fast. A distance query asks, given an arbitrary pair of vertices v, w, to
compute dist(v, w). This problem has applications in web mapping services such
as MapQuest and Google Maps. There is a tradeoff between the size of the data
structure and the time for answering a query. For instance, Dijkstra’s algorithm
gives a trivial solution of the query version of the SP problem with (small)
O(n + m) space (for storing the input graph), but large O(m log n) query time
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(for running Dijkstra’s algorithm with a source the first query vertex). On the
other end of the spectrum, Floyd-Warshall’s algorithm can be used to construct
a (large) O(n2) data structure (the distance matrix) allowing (short) O(1) query
time (retrieving the distance from the data base). However, for very large graphs,
the O(n2) space requirement is impractical. We are interested in an algorithm
that needs significantly less than than O(n2) space, but will answer queries
faster than Disjkstra’s algorithm. Our algorithm will use the structure of planar
graphs for increased efficiency, as most road networks are planar or near-planar,
and will also be highly parallelizable, making use of the features available in
modern high-performance clusters and specialized processors such as the GPUs.

The query version for shortest path queries in planar graphs was proposed
in [3] and after that different aspects of the problem were studied by multiple
authors, e.g., [6,1,8,9]. Here we present the first distributed implementation for
solving the problem that is designed to make use of the potential for parallelism
offered by GPUs. Our solution makes use of the fast parallel algorithm for com-
puting shortest paths in planar graphs from [4], resulting in asymptotically faster
and also shown to be efficient in practice.

2 Preliminaries

Given a graph G with a weight wt(e) on each edge e, the length of a path p is
the sum of the weights of the edges of the path. The single-pair shortest path
problem (SPSP) is, given a pair v, w of vertices of G, to find a path between
v and w, called shortest path (SP), with minimum length. The length of that
path is called distance between v and w and is denoted as dist(v, w). For any
subgraph H of G, the distance between v and w in H is denoted as distH(v, w).
The single-source shortest path problem (SSSP) is to find SPs from a fixed vertex
v to all other vertices of G. Finally, the all-pairs shortest path problem (APSP)
is to find SPs between all pairs of vertices. There are distance versions of SPSP,
SSSP, and APSP, which are more commonly studied, where the objective is to
compute the corresponding distances instead of SPs. Most distance algorithms
allow the corresponding SPs to be retrieved in additional time proportional to
the number of the edges of the path. In this paper, by SPSP, SSSP, and APSP
we mean the distance versions of these problems.

A k-partition P of G is a set V1, . . . , Vk of subsets of V (G), the set of the

vertices of G, such that Vi ∩ Vj = ∅ if i 6= j and
⋃k

i=1 Vi = V (G). We call the
subgraphs of G induced by Vi components of P. The boundary of the partition
consists consists of all vertices of G that have at least one neighbor in a different
component. We denote by BG(G) or simply by BG the subgraph of G induced by
the boundary vertices. For any C ∈ P, we denote by B(C) the set of all boundary
vertices that are from C. For any planar graph of n vertices and bounded (O(1)
as a function of n) vertex degree one can find in O(n) time a k-partition P with
|B(C)| = O(

√
n/k) for each component C ∈ P.



3 Algorithm overview and analysis

Our algorithm works in two modes: preprocessing mode, during which a data
structure is computed that allows efficient SP queries, and the query mode that
uses that data structure to compute the distance between a query pair of vertices.
We assume that the input is a planar graph G of n vertices and bounded vertex
degree and the cluster has p nodes.

3.1 Preprocessing mode

The preprocessing algorithm (Algorithm 1) has three phases. During the first
phase (line 1), the graph is partitioned and each component is assigned to a
distinct cluster node. During the second phase (lines 2-5), the APSP problem is
solved for each component C independently and in parallel and the computed
distance matrix APSP(C) is stored at the same node. Finally, in the third phase
(lines 6-10), the boundary graph BG is constructed and the APSP is solved for
BG . That computation is done distributedly such that the distances from vertex
v ∈ BG to all other vertices of BG are computed at the node containing v, by
using Dijkstra’s algorithm [2]. The computed distance matrix is stored at the
node that has done the computations. Hence, at the end of the algorithm, the
node N(C) contains two matrices: one containing the SP distances in C and the
other containing all SP distances in BG with source a vertex in BG ∩ C.

One can think of BG as a compressed version of G where the non-boundary
vertices are removed, but are implicitly represented in BG by the information
encoded in its edge weights. Note however that the distances APSP(C) (and the
corresponding edge weights of BG) are not distances in G; the reason is that a
shortest path between two vertices v and w from C might pass through vertices
not in C. Hence the following fact is non-trivial.

Lemma 1. [4] For any two vertices v, w ∈ BG the distance between v and w in
BG is equal to the distance between v and w in G.

We will next estimate the time and space (memory) required to run the al-
gorithm. As G is planar and of bounded vertex degree (as a function of n), it
can be divided in O(n) time into k parts so that each part has no more than
(n/k) vertices and O(

√
n/k) boundary vertices [5]. We will estimate the require-

ments of each phase. Since the maximum amount of coarse-grained parallelism
of Algorithm 1 is min{p, k}, we assume without loss of generalization that p ≤ k.

Phase 1 requires O(n) running time and O(n) space [5].
The complexity of Phase 2 is dominated by the time for computing dis-

tances in line 3. We assume that we are using the algorithm from [4] that can
be implemented efficiently on a GPU-accelerated architecture and has complex-
ity O(N9/4). Then Phase 2 requires O((k/p)(n/k)9/4) = O(n9/4/(pk5/4)) time
and kO((n/k)

√
n/k) = O(n3/2/k1/2) total space. The space per processor is

kO((n/k)2) = O(n2/k).
For Phase 3, the number of the vertices of BG is k O(

√
n/k) = O(

√
nk) and

the number of the edges is k O((
√
n/k)2) = O(n). One execution of line 8 (for one



component C) takes (k/p)|BG∩C||E(BG)| log(|BG |) = (k/p)O(
√
n/k)O(n log n)

time and O(n) space. The space needed for one iteration of Step 9 is |BG ∩
C||BG | = O(

√
n/k
√
nk) = O(n). Hence Phase 3 requiresO((k/p)n3/2/k1/2 log n)

= O(n3/2k1/2 log n/p) time and O(nk/p) space per processor.
Summing up the requirements for Phases 1, 2, and 3, we get O(n9/4/(pk5/4)+

n3/2k1/2 log n/p)) time and O(n + n2/(pk) + nk/p) space per processor needed
for Algorithm 1. Assuming space is more important in this case than time (since
nodes have limited memory), we find that k = n1/2 minimizes the function
n2/k + nk. Hence we have the following result.

Lemma 2. With k = dn1/2e and p ≤ k, Algorithm 1 runs in O(n7/4 log n/p)
time and uses O(n3/2/p) space per processor. With p = k, the time and space
are O(n5/4) and O(n), respectively.

The time bound of Lemma 2 is conservative as it doesn’t take into account
our use of fine-grain parallelism due to multi-threading, e.g., by the GPUs.

Algorithm 1 Preprocessing algorithm

Input: A planar graph G
Output: A data structure for efficient shortest path queries in G

/∗ Partitioning ∗/
1: Construct a k-partition P of G and assign each component C to a distinct node

N(C)
/∗ Solve the APSP problem for each component ∗/

2: for all components C ∈ P do in parallel
3: Solve APSP for C and save the distances in a table APSP(C)
4: For each pair of boundary vertices v, w ∈ C define edge (v, w), if not already in

G, and assign a weight wt(v, w) = distC(v, w)
5: end for

/∗ Solve the APSP problem for the boundary graph ∗/
6: Define a boundary graph BG with vertices all boundary vertices of G and edges as

defined in the previous step and store it at each node
7: for all components C ∈ P do in parallel
8: Solve SSSP in BG for each vertex of C ∩ BG
9: Store the distances from all vertices of C ∩ BG to all vertices of BG in a

table APSPBG(C)
10: end for

3.2 Query mode

The query algorithm (Algorithm 2) is based on the fact that if C1 6= C2, then
any path between v1 and v2 should cross both B(C1) and B(C2). Let π be a
shortest path between v1 and v2. Then π can be divided into three parts: from
v1 to a vertex b1 from B(C1), from b1 to a vertex b2 on p from B(C2), and from
b2 to v2. Vertices b1 and b2 minimizing the length of p are found as follows: in



the loop on lines 2-7, for each b2 an optimal b1 and dist(v1, b2) are found; in lines
10-12 an optimal b2 is found.

Algorithm 2 Query algorithm

Input: Vertices v1, v2 of G, a k-partition P of G, tables APSP(C) and APSPBG(C)
for all C ∈ P

Output: dist(v1, v2)
1: Determine components C1 and C2 such that v1 ∈ C1, v2 ∈ C2

2: for all vertices b2 ∈ B(C2) do in parallel
/∗ Compute dist(v1, b2) ∗/

3: dist(v1, b2) =∞
4: for all vertices b1 ∈ B(C1) do
5: dist(v1, b2) = min{dist(v1, b2), distC1(v1, b1) + distBG(b1, b2)}
6: end for
7: end for
8: If N(C1) 6= N(C2) then transfer the column of SP(C2) corresponding to v2 from

N(C2) to N(C1).
/∗ Now we can compute dist(v1, v2) ∗/

9: dist(v1, v2) =∞
10: for all vertices b2 ∈ B(C2) do
11: dist(v1, v2) = min{dist(v1, v2), dist(v1, b2) + distC2(b2, v2)}
12: end for
13: If C1 = C2 then dist(v1, v2) = min{dist(v1, v2), distC1(v1, v2)}, where the distance

distC1(v1, v2) is taken from APSP(C1).

Lemma 3. Algorithm 2 correctly computes dist(v1, v2) and its running time is
O(n1/4) with k = dn1/2e and p ≥ dn1/4e.

Proof. Let π be a shortest path between v1 and v2, let C1 6= C2, and let b1 be
the first vertex along π that is on B(C1) and π1 be the subpath of π from v1 to
b1, let π2 be the last vertex along π that is on B(C2) and π2 be the subpath of π
from b1 to b2, and let π3 be the subpath of π from b2 to v2. Then π1 is entirely in
C1 and hence distC1(v1, b1) = distG(v1, b1) (note, however, that the distances in
APSP(C1) from v1 to other vertices from B(C1) may not be correct). Similarly,
distC2

(b2, v2) = distG(b2, v2). Finally, distBG(b1, b2) = distG(b1, b2) by Lemma 1.
Hence lines 5 and 11 use correct values for computing the distances between v1
and b2 and between b2 and v2.

If C1 = C2 (line 13), then a shortest path between v1 and v2 may or may not
leave C1. In the first case lines 1-12 compute correctly dist(v1, v2), in the second
case APSP(C1) contains the correct distance.

The loop on lines 5-10 takes time |B(C1)||B(C2)|/p = O(
√
n/k

√
n/k/p) =

O(n/(pk)), for p ≤ min{k, (n/k)1/2}. If k = n1/2 and p = n1/4 (the maximum
value for which the formula applies), that time becomes O(n1/4). The loop in
lines 10-12 takes time O((n/k)1/2) = O(n1/4) for k = n1/2.



Note that using the methodology of [3], a more complex implementation of
Algorithm 2 can reduce the query time to logarithmic. Note also that compu-
tation in lines 2-7 can be overlapped with transferring of data in line 8 thereby
saving time (upto a factor of two).

4 Implementation details

In this section, we describe how the preprocessing and query modes are imple-
mented on a hybrid CPU-GPU cluster. We use a distance matrix to represented
both the input graph G and the output. Such a 2-dimensional matrix contains
in cell (i, j) the value of the distance from vertex i to vertex j. Initially, cell (i, j)
contains wt(i, j) if an edge (i, j) is present in G, or infinity otherwise. These
values are updated as the algorithm progresses. At the end of the algorithm, cell
(i, j) contains dist(i, j).

In phase 1 of the preprocessing mode, we construct a k-partition of G using
the METIS library[7]. Based on that partition, we reorder the vertices of G so
that vertices from the same component have consecutive indices and boundary
vertices of each components have the lowest indices – see Figure 1 .
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Fig. 1: Distance matrix after reorder-
ing of the vertices. Vertices from the
same component are stored contigu-
ously starting with boundary vertices.
Red submatrices are also part of the
boundary distance matrix. Grey sub-
matrices do not generate any compu-
tations in preprocessing mode.

v

w

...
..

.
Submatrix (I, I) Submatrix (I, J)

Submatrix (J, J)

B(C
I
)

B(C
J
)

v B(C
I
)

wB(C
J
)

Fig. 2: The distances required to com-
pute dist(v, w), shown in green, are
scattered in three submatrices: two di-
agonal ones, for component I and for
component J , and a non-diagonal sub-
matrix (I, J).

In phase 2, we compute the shortest distances within each of the components.
For k components, this phase gives a total k independent tasks that can be
executed in parallel. Computations at this phase are already balanced across



nodes as components contain roughly the same number of vertices and the APSP
algorithm from [4] ensures the same O(N9/4) complexity with respect to the
number of nodes.

Finally, phase 3 consists in computing the shortest distances within the
boundary graph using Dijkstra’s algorithm. Computations at this phase may
be imbalanced between nodes for two reasons. First, the number of boundary
vertices in two components may differ and, second, the complexity of Dijkstra’s
algorithm does not solely depend on the number of vertices in the graph, but
also on the number of edges, which may vary even more than the number of
vertices between two components’ boundary graphs.

In the query mode, we are interested in finding dist(v, w), where v and w are
from components I and J , respectively. The required values for that computation
are scattered in three submatrices, as illustarted in Figure 2. For such a query,
assuming k = p, node i, holding the required values from diagonal submatrix
I and non-diagonal submatrix (I, J), will be in charge of the computations.
Required values from diagonal submatrix J are held by node j and need to be
transfered to node i.

5 Experimental evaluation

In this section we describe experiments designed to test our algorithm and its
implementation. Specifically, we are going to test the strong scaling properties by
running our code on a fixed graph size and a varying number p of cluster nodes
and number k of components. All computations are run on a 300 node cluster.
Each cluster node is comprised of 2 x Eight-Core Intel Xeon model E5-2670 @
2.6 GHz and two GPGPU Nvidia Tesla M2090 cards connected to PCIe-2.0 x16
slots. In order to make full use of the available GPUs, each node is assigned at
least two graph components so that the two associated diagonal submatrices can
be computed simultaneously on the two GPUs.

For the strong-scaling experiment, the graph size is fixed to 256k vertices.
Preprocessing and queries are run with increasing numbers of nodes ranging from
4 to 64. Each node handles 2 components (one per available GPU); therefore the
number of components k ranges from 8 to 128.

Figure 3 shows the run times for the preprocessing mode. For low numbers
of nodes and thus low values of k, preprocessing time is dominated by step 2 -
the computation of the shortest distances within each component - since lower k
values means larger components. For higher numbers of nodes and thus higher
values of k, preprocessing time becomes dominated by step 3 - the computation
of the boundary graph - as more components mean higher numbers of incident
edges and thus larger boundary graphs. Note that while the figure seems to show
supralinear speedup, that is not the case (and similarly for the memory usage).
The reason is that, with increasing the number of processors p, the number k of
parts is increased too (as it is tied to p in this implementation) and hence the
complexity of the algorithm is also reduced.
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Figure 4 shows the query times and peak memory usage per node. The run
times are given for 10, 000 queries from random sources to random targets. Note
that in the query mode only fine-grain (node-level) parallelism is used, while
multiple nodes are still needed for distributed storage and, optionally, to handle
multiple queries in parallel (not implemented in the current version). For the
memory usage, the optimal value for k, theoretically expected to be

√
n – or 512

for this instance – is not reached in this experiment since k only goes up to 128.
We can however see that peak memory usage per node is still dropping with
increasing values of k up to 128. The query times in the figure vary from about 2
milliseconds per query for k = 8 to 0.25 milliseconds for k = 128. Compared with
the Boost library implementation of Dijkstra’s algorithm, our implementation
answers queries on the largest instances about 1000 times faster.

6 Conclusion

We developed and implemented a distributed algorithm for shortest path queries
in planar graphs with good scalability. It allows answering SP queries in O(n1/4)
time by using O(

√
n) processors with O(n) space per processor and O(n5/4)

preprocessing time. Our implementation on 300 node CPU-GPU cluster has
preprocessing time of less than 10 seconds using 32 or more nodes and 0.025
milliseconds per query using two nodes. Interesting tasks for future research is
implementing a version allowing parallel queries and reducing the query time of
the implementation to O(log n) by using properties of graph planarity.
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