Skip to main content

Algorithmic Robustness for Semi-Supervised \((\epsilon , \gamma , \tau )\)-Good Metric Learning

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9489))

Included in the following conference series:

Abstract

Using the appropriate metric is crucial for the performance of most of machine learning algorithms. For this reason, a lot of effort has been put into distance and similarity learning. However, it is worth noting that this research field lacks theoretical guarantees that can be expected on the generalization capacity of the classifier associated to a learned metric. The theoretical framework of \((\epsilon , \gamma , \tau )\)-good similarity functions [1] provides means to relate the properties of a similarity function and those of a linear classifier making use of it. In this paper, we extend this theory to a method where the metric and the separator are jointly learned in a semi-supervised way, setting that has not been explored before. We furthermore prove the robustness of our algorithm, which allows us to provide a generalization bound for this approach. The behavior of our method is illustrated via some experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balcan, M.F., Blum, A., Srebro, N.: Improved guarantees for learning via similarity functions. In: COLT, pp. 287–298. Omnipress (2008)

    Google Scholar 

  2. Bao, J.P., Shen, J.Y., Liu, X.D., Liu, H.Y.: Quick asymmetric text similarity measures. ICMLC (2003)

    Google Scholar 

  3. Baoli, L., Qin, L., Shiwen, Y.: An adaptive k-nearest neighbor text categorization strategy. ACM TALIP 3, 215–226 (2004)

    Article  Google Scholar 

  4. Bellet, A., Habrard, A., Sebban, M.: Similarity learning for provably accurate sparse linear classification. ICML 2012, 1871–1878 (2012)

    MATH  Google Scholar 

  5. Bellet, A., Habrard, A., Sebban, M.: A survey on metric learning for feature vectors and structured data. arXiv preprint arXiv:1306.6709 (2013)

  6. Davis, J.V., Kulis, B., Jain, P., Sra, S., Dhillon, I.S.: Information-theoretic metric learning. In: ICML, pp. 209–216. ACM, New York (2007)

    Google Scholar 

  7. Diligenti, M., Maggini, M., Rigutini, L.: Learning similarities for text documents using neural networks. In: ANNPR (2003)

    Google Scholar 

  8. Grabowski, M., Szałas, A.: A technique for learning similarities on complex structures with applications to extracting ontologies. In: Szczepaniak, P.S., Kacprzyk, J., Niewiadomski, A. (eds.) AWIC 2005. LNCS (LNAI), vol. 3528, pp. 183–189. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Guo, Z.C., Ying, Y.: Guaranteed classification via regularized similarity learning. CoRR abs/1306.3108 (2013)

  10. Hoi, S.C.H., Liu, W., Chang, S.F.: Semi-supervised distance metric learning for collaborative image retrieval and clustering. TOMCCAP 6(3), 18 (2010)

    Article  Google Scholar 

  11. Hust, A.: Learning similarities for collaborative information retrieval. In: Machine Learning and Interaction for Text-Based Information Retrieval Workshop, TIR-04, pp. 43–54 (2004)

    Google Scholar 

  12. Kolmogorov, A., Tikhomirov, V.: \(\epsilon \)-entropy and \(\epsilon \)-capacity of sets in functional spaces. Am. Math. Soc. Transl. 2(17), 277–364 (1961)

    Google Scholar 

  13. Qamar, A.M., Gaussier, É.: Online and batch learning of generalized cosine similarities. In: ICDM, pp. 926–931 (2009)

    Google Scholar 

  14. Shalev-Shwartz, S., Singer, Y., Ng, A.Y.: Online and batch learning of pseudo-metrics. In: ICML. ACM, New York (2004)

    Google Scholar 

  15. van der Vaart, A., Wellner, J.: Weak Convergence and Empirical Processes. Springer Series in Statistics. Springer, New York (1996)

    Book  MATH  Google Scholar 

  16. Weinberger, K., Saul, L.: Distance metric learning for large margin nearest neighbor classification. JMLR 10, 207–244 (2009)

    MATH  Google Scholar 

  17. Xu, H., Mannor, S.: Robustness and generalization. In: COLT, pp. 503–515 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria-Irina Nicolae .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Nicolae, MI., Sebban, M., Habrard, A., Gaussier, E., Amini, MR. (2015). Algorithmic Robustness for Semi-Supervised \((\epsilon , \gamma , \tau )\)-Good Metric Learning. In: Arik, S., Huang, T., Lai, W., Liu, Q. (eds) Neural Information Processing. ICONIP 2015. Lecture Notes in Computer Science(), vol 9489. Springer, Cham. https://doi.org/10.1007/978-3-319-26532-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26532-2_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26531-5

  • Online ISBN: 978-3-319-26532-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics