Skip to main content

Learning Task Specific Distributed Paragraph Representations Using a 2-Tier Convolutional Neural Network

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9489))

Included in the following conference series:

  • 2166 Accesses

Abstract

We introduce a type of 2-tier convolutional neural network model for learning distributed paragraph representations for a special task (e.g. paragraph or short document level sentiment analysis and text topic categorization). We decompose the paragraph semantics into 3 cascaded constitutes: word representation, sentence composition and document composition. Specifically, we learn distributed word representations by a continuous bag-of-words model from a large unstructured text corpus. Then, using these word representations as pre-trained vectors, distributed task specific sentence representations are learned from a sentence level corpus with task-specific labels by the first tier of our model. Using these sentence representations as distributed paragraph representation vectors, distributed paragraph representations are learned from a paragraph-level corpus by the second tier of our model. It is evaluated on DBpedia ontology classification dataset and Amazon review dataset. Empirical results show the effectiveness of our proposed learning model for generating distributed paragraph representations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/yoonkim/CNN_sentence.

  2. 2.

    http://ronan.collobert.com/senna/.

References

  1. Bengio, Y., Ducharme, R., Vincent, P.: A neural probabilistic language model. J. Mach. Learn. Res. 3, 1137–1155 (2003)

    MATH  Google Scholar 

  2. Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hellmann, S.: Dbpedia-a crystallization point for the web of data. Web Semant. Sci. Serv Agents World Wide Web 7(3), 154–165 (2009)

    Article  Google Scholar 

  3. Collobert, R., Weston, J.: A unified architecture for natural language processing: Deep neural networks with multitask learning. In: Proceedings of the 25th International Conference on Machine Learning (ICML), pp. 160–167. ACM (2008)

    Google Scholar 

  4. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.: Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12, 2493–2537 (2011)

    MATH  Google Scholar 

  5. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: Liblinear: a library for large linear classification. J. Mach. Learn. Res. 9, 1871–1874 (2008)

    MATH  Google Scholar 

  6. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software: an update. ACM SIGKDD explorations newsletter 11(1), 10–18 (2009)

    Article  Google Scholar 

  7. Kim, Y.: Convolutional neural networks for sentence classification. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1746–1751 (2014)

    Google Scholar 

  8. Le, Q.V., Mikolov, T.: Distributed representations of sentences and documents. In: Proceedings of the 31th International Conference on Machine Learning (ICML). pp. 1188–1196 (2014)

    Google Scholar 

  9. Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N., Hellmann, S., Morsey, M., van Kleef, P., Auer, S., et al.: Dbpedia-a large-scale, multilingual knowledge base extracted from wikipedia. Semant. Web J. 5, 1–29 (2014)

    Google Scholar 

  10. McAuley, J., Leskovec, J.: Hidden factors and hidden topics: understanding rating dimensions with review text. RecSys (2013)

    Google Scholar 

  11. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. In: Proceedings of Workshop at the International Conference on Learning Representations (ICLR) (2013)

    Google Scholar 

  12. Miller, G.A.: Wordnet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)

    Article  Google Scholar 

  13. Mnih, A., Hinton, G.E.: A scalable hierarchical distributed language model. In: Advances in Neural Information Processing Systems (NIPS), pp. 1081–1088 (2009)

    Google Scholar 

  14. Morin, F., Bengio, Y.: Hierarchical probabilistic neural network language model. In: Proceedings of the International Workshop on Artificial Intelligence and Statistics, pp. 246–252. Citeseer (2005)

    Google Scholar 

  15. dos Santos, C.N., Gatti, M.: Deep convolutional neural networks for sentiment analysis of short texts. In: Proceedings of the 25th International Conference on Computational Linguistics (COLING). Dublin, Ireland (2014)

    Google Scholar 

  16. Socher, R., Perelygin, A., Wu, J.Y., Chuang, J., Manning, C.D., Ng, A.Y., Potts, C.: Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP). pp. 1631–1642. Citeseer (2013)

    Google Scholar 

  17. Zhang, X., LeCun, Y.: Text understanding from scratch. arXiv preprint arXiv:1502.01710 (2015)

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. 61370165, 61203378), National 863 Program of China 2015AA015405, the Natural Science Foundation of Guangdong Province (No. S2013010014475), Shenzhen Development and Reform Commission Grant No.[2014]1507, Shenzhen Peacock Plan Research Grant KQCX20140521144507925 and Baidu Collaborate Research Funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruifeng Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Chen, T., Xu, R., He, Y., Wang, X. (2015). Learning Task Specific Distributed Paragraph Representations Using a 2-Tier Convolutional Neural Network. In: Arik, S., Huang, T., Lai, W., Liu, Q. (eds) Neural Information Processing. ICONIP 2015. Lecture Notes in Computer Science(), vol 9489. Springer, Cham. https://doi.org/10.1007/978-3-319-26532-2_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26532-2_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26531-5

  • Online ISBN: 978-3-319-26532-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics