Skip to main content

Robust Online Multi-object Tracking by Maximum a Posteriori Estimation with Sequential Trajectory Prior

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9489))

Included in the following conference series:

Abstract

This paper address the problem of online multi-object tracking by using the Maximum a Posteriori (MAP) framework. Given the observations up to the current frame, we estimate the optimal object trajectories by solving two MAP estimation problems: object detection and trajectory-detection association. By introducing the sequential trajectory prior, i.e., the prior information from previous frames about “good” trajectories, into MAP estimation, the output of the pre-trained object detector is refined and the correctness of the association between trajectories and detections is enhanced. In addition, the sequential trajectory prior allows the two MAP stages interact with each other in a sequential manner, which facilitates online multi-object tracking. Our experiments on publicly available challenging datasets demonstrate that the proposed algorithm provides superior performance in various complex scenes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR, pp. 886–893 (2005)

    Google Scholar 

  2. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE TPAMI 32(9), 1627–1645 (2010)

    Article  Google Scholar 

  3. Dollár, P., Appel, R., Belongie, S., Perona, P.: Fast feature pyramids for object detection. IEEE TPAMI 36(8), 1532–1545 (2014)

    Article  Google Scholar 

  4. Pirsiavash, H., Ramanan, D., Fowlkes, C.C.: Globally-optimal greedy algorithms for tracking a variable number of objects. In: CVPR, pp. 1201–1208 (2011)

    Google Scholar 

  5. Milan, A., Roth, S., Schindler, K.: Continuous energy minimization for multitarget tracking. IEEE TPAMI 36(1), 58–72 (2014)

    Article  Google Scholar 

  6. Geiger, A., Lauer, M., Wojek, C., Stiller, C., Urtasun, R.: 3D traffic scene understanding from movable platforms. IEEE TPAMI 36(5), 1012–1025 (2014)

    Article  Google Scholar 

  7. Wu, B., Nevatia, R.: Detection and tracking of multiple, partially occluded humans by bayesian combination of edgelet based part detectors. IJCV 75(2), 247–266 (2007)

    Article  Google Scholar 

  8. Breitenstein, M.D., Reichlin, F., Leibe, B., Koller-Meier, E., Van Gool, L.: Online multiperson tracking-by-detection from a single, uncalibrated camera. IEEE TPAMI 33(9), 1820–1833 (2011)

    Article  Google Scholar 

  9. Shu, G., Dehghan, A., Oreifej, O., Hand, E., Shah, M.: Part-based multiple-person tracking with partial occlusion handling. In: CVPR, pp. 1815–1821 (2012)

    Google Scholar 

  10. Bae, S.H., Yoon, K.J.: Robust online multi-object tracking based on tracklet confidence and online discriminative appearance learning. In: CVPR, pp. 1218–1225 (2014)

    Google Scholar 

  11. Luo, W., Kim, T.K., Stenger, B., Zhao, X., Cipolla, R.: Bi-label propagation for generic multiple object tracking. In: CVPR, pp. 1290–1297 (2014)

    Google Scholar 

  12. Bae, S.H., Yoon, K.J.: Robust online multi-object tracking with data association and track management. IEEE TIP 23(7), 2820–2833 (2014)

    MathSciNet  Google Scholar 

  13. Kuhn, H.W.: The Hungarian method for the assignment problem. Nav. Res. Logistics Q. 2(1–2), 83–97 (1995)

    MathSciNet  Google Scholar 

  14. Ellis, A., Shahrokni, A., Ferryman, J.M.: PETS2009 and Winter-PETS 2009 results: a combined evaluation. In: IEEE International Workshop on Performance Evaluation of Tracking and Surveillance (PETS-Winter), pp. 1–8 (2009)

    Google Scholar 

  15. Andriluka, M., Roth, S., Schiele, B.: People-tracking-by-detection and people-detection-by-tracking. In: CVPR, pp. 1–8 (2008)

    Google Scholar 

  16. Ess, A., Leibe, B., Schindler, K., Van Gool, L.: A mobile vision system for robust multi-person tracking. In: CVPR, pp. 1–8 (2008)

    Google Scholar 

  17. Keni, B., Rainer, S.: Evaluating multiple object tracking performance: the CLEAR MOT metrics. EURASIP J. Image Video Process. (2008)

    Google Scholar 

  18. Li, Y., Huang, C., Nevatia, R.: Learning to associate: hybridboosted multi-target tracker for crowded scene. In: CVPR, pp. 2953–2960 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Yang, M., Pei, M., Shen, J., Jia, Y. (2015). Robust Online Multi-object Tracking by Maximum a Posteriori Estimation with Sequential Trajectory Prior. In: Arik, S., Huang, T., Lai, W., Liu, Q. (eds) Neural Information Processing. ICONIP 2015. Lecture Notes in Computer Science(), vol 9489. Springer, Cham. https://doi.org/10.1007/978-3-319-26532-2_69

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26532-2_69

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26531-5

  • Online ISBN: 978-3-319-26532-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics