Skip to main content

Adaptive Threshold for Anomaly Detection Using Time Series Segmentation

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9491))

Included in the following conference series:

Abstract

Time series data are generated from almost every domain and anomaly detection becomes extremely important in the last decade. It consists in detecting anomalous patterns through identifying some new and unknown behaviors that are abnormal or inconsistent relative to most of the data. An efficient anomaly detection algorithm has to adapt the detection process for each system condition and each time series behavior. In this paper, we propose an adaptive threshold able to detect anomalies in univariate time series. Our algorithm is based on segmentation and local means and standard deviations. It allows us to simplify time series visualization and to detect new abnormal data as time series jumps within different time series behavior. On synthetic and real datasets the proposed approach shows good ability in detecting abnormalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Esling, P., Agon, C.: Time-series data mining. ACM Comput. Surv. 45(1), 34 (2012)

    Article  MATH  Google Scholar 

  2. Gupta, M., Gao, J., Aggarwa, C.C., Han, J.: Outlier detection for temporal data: a survey. IEEE Trans. Knowl. Data Eng. 26, 2250–2267 (2014)

    Article  Google Scholar 

  3. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. 41(3), 58 (2009). Article 15

    Article  Google Scholar 

  4. Dani, M.-C., Freixo, C., Jollois, F.-X., Nadif, M.: Unsupervised anomaly detection for aircraft condition monitoring system. In: IEEE Aeroconf 2015 (2015)

    Google Scholar 

  5. Martí, L., Sanchez-Pi, N., Molina, J.M., Bicharra Garcia, A.C.: YASA: yet another time series segmentation algorithm for anomaly detection in big data problems. In: Polycarpou, M., de Carvalho, A.C.P.L.F., Pan, J.-S., Woźniak, M., Quintian, H., Corchado, E. (eds.) HAIS 2014. LNCS, vol. 8480, pp. 697–708. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  6. Salvador, S., Chan, P.: Learning states and rules for detecting anomalies in time series. Appl. Intell. 23(3), 241–255 (2005)

    Article  Google Scholar 

  7. Keogh, E., Lin, J., Ada, F.: HOT SAX: efficiently finding the most unusual time series subsequence. In: Proceedings of the Fifth IEEE International Conference on Data Mining (ICDM 2005), pp. 226–233. IEEE Computer Society, Washington, DC (2005)

    Google Scholar 

  8. Breunig, M.M., Kriegel, H.-P., Ng, R.T., Sander, J.: LOF: identifying density-based local outliers. SIGMOD Rec. 29(2), 93–104 (2000)

    Article  Google Scholar 

  9. Chen, C., Liu, L.-M.: Joint estimation of model parameters and outlier effects in time series. J. Am. Stat. Assoc. 88, 284–297 (1993)

    MATH  Google Scholar 

  10. Mnz, G., Li, S., Carle, G.: Traffic anomaly detection using k-means clustering. In: Proceedings of Leistungs-, Zuverlssigkeits-und Verlsslichkeitsbewertung von Kommunikationsnetzen und Verteilten Systemen, GI/ITG-Workshop MMBnet, September 2007

    Google Scholar 

  11. Gupta, M., Sharma, A.B., Chen, H., Jiang, G.: Context-aware time series anomaly detection for complex systems. In: Proceedings of the SDM Workshop (2013)

    Google Scholar 

  12. Rosner, B.: Percentage points for a generalized ESD many-outlier procedure. Technometrics 25(2), 165–172 (1983)

    Article  MATH  Google Scholar 

  13. Miller, J.: Reaction time analysis with outlier exclusion: bias varies with sample size. Q. J. Exper. Psychol. 43(4), 907–912 (1991)

    Article  Google Scholar 

  14. Chakrabarti, K., Keogh, E., Mehrotra, S., Pazzani, M.: Locally adaptive dimensionality reduction for indexing large time series databases. ACM Trans. Database Syst. 27(2), 188–228 (2002)

    Article  Google Scholar 

  15. Haar, A.: Zur Theorie der orthogonalen Funktionensysteme. Math. Ann. 38–53 (1911). German

    Google Scholar 

  16. Yahoo! Research Webscope datasets, A Labeled Anomaly Detection Dataset, version 1.0’. http://webscope.sandbox.yahoo.com/catalog.php?datatype=s

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed-Cherif Dani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Dani, MC., Jollois, FX., Nadif, M., Freixo, C. (2015). Adaptive Threshold for Anomaly Detection Using Time Series Segmentation. In: Arik, S., Huang, T., Lai, W., Liu, Q. (eds) Neural Information Processing. ICONIP 2015. Lecture Notes in Computer Science(), vol 9491. Springer, Cham. https://doi.org/10.1007/978-3-319-26555-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26555-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26554-4

  • Online ISBN: 978-3-319-26555-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics