Skip to main content

Variants of Multi-resource Scheduling Problems with Equal Processing Times

  • Conference paper
  • First Online:
Combinatorial Optimization and Applications

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9486))

Abstract

We tackle the problem of non-preemptive scheduling of a set of tasks of duration p over m machines with given release and deadline times. We present a polynomial time algorithm as a generalization to this problem, when the number of machines fluctuates over time. Further, we consider different objective functions for this problem. We show that if an arbitrary function cost \(c_i(t)\) is associated to task i for each time t, minimizing \(\sum _{i=1}^n c_i(s_i)\) is NP-Hard. Further, we specialize this objective function to the case that it is merely contingent on the time and show that although this case is pseudo-polynomial in time, one can derive polynomial algorithms for the problem, provided the cost function is monotonic or periodic. Finally, as an observation, we mention how polynomial time algorithms can be adapted with the objective of minimizing maximum lateness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice Hall, Upper Saddle River (1993)

    MATH  Google Scholar 

  2. Artiouchine, K., Baptiste, P.: Inter-distance constraint: an extension of the all-different constraint for scheduling equal length jobs. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 62–76. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Bansal, N., Pruhs, K.: The geometry of scheduling. SIAM J. Comput. 43(5), 1684–1698 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dürr, C., Hurand, M.: Finding total unimodularity in optimization problems solved by linear programs. Algorithmica (2009). doi:10.1007/s00453-009-9310-7

    MATH  Google Scholar 

  5. Gabow, H.N., Tarjan, R.E.: A linear-time algorithm for a special case of disjoint set union. In: Proceedings of the 15th annual ACM symposium on Theory of Computing, pp. 246–251 (1983)

    Google Scholar 

  6. Goldberg, A.V.: Scaling algorithms for the shortest paths problem. SIAM J. Comput. 24(3), 494–504 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Harter, R.: The minimum on a sliding window algorithm. Usenet article (2001). http://richardhartersworld.com/cri/2001/slidingmin.html

  8. Horn, W.A.: Some simple scheduling algorithms. Naval Res. Logistics Q. 21(1), 177–185 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  9. Leung, J.Y.-T.: Handbook of Scheduling: Algorithms, Models, and Performance Analysis. CRC Press, Boca Raton (2004)

    MATH  Google Scholar 

  10. Lipski Jr, W., Preparata, F.P.: Efficient algorithms for finding maximum matchings in convex bipartite graphs and related problems. Acta Informatica 15(4), 329–346 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  11. López-Ortiz, A., Quimper, C.-G.: A fast algorithm for multi-machine scheduling problems with jobs of equal processing times. In: Proceedings of the 28th International Symposium on Theoretical Aspects of Computer Science (STACS 2011), pp. 380–391 (2011)

    Google Scholar 

  12. Möhring, R.H., Schulz, A.S., Stork, F., Uetz, M.: Solving project scheduling problems by minimum cut computations. Manage. Sci. 49(3), 330–350 (2003)

    Article  MATH  Google Scholar 

  13. Simons, B.: Multiprocessor scheduling of unit-time jobs with arbitrary release times and deadlines. SIAM J. Comput. 12(2), 294–299 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  14. Simons, B.B., Warmuth, M.K.: A fast algorithm for multiprocessor scheduling of unit-length jobs. SIAM J. Comput. 18(4), 690–710 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Simons, B.: A fast algorithm for single processor scheduling. In: 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, pp. 246–252. IEEE (1978)

    Google Scholar 

  16. Wolsey, L.A., Nemhauser, G.L.: Integer and Combinatorial Optimization. Wiley, New York (2014)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude-Guy Quimper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Fahimi, H., Quimper, CG. (2015). Variants of Multi-resource Scheduling Problems with Equal Processing Times. In: Lu, Z., Kim, D., Wu, W., Li, W., Du, DZ. (eds) Combinatorial Optimization and Applications. Lecture Notes in Computer Science(), vol 9486. Springer, Cham. https://doi.org/10.1007/978-3-319-26626-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26626-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26625-1

  • Online ISBN: 978-3-319-26626-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics