Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 407))

Abstract

The daily activities recognition is one of the most important areas that attract the attention of researchers. Automatic classification of activities of daily living (ADL) can be used to promote healthier lifestyle, though it can be challenging when it comes to intellectual disability personals, the elderly, or children. Thus developing a technique to recognize activities with high quality is critical for such applications. In this work, seven algorithms are developed and evaluated for classification of everyday activities like climbing the stairs, drinking water, getting up from bed, pouring water, sitting down on a chair, standing up from a chair, and walking. Algorithms of concern are K-nearest Neighbor, Artificial Neural Network, and Naïve Bayes, Dynamic Time Warping, $1 recognizer, Support Vector Machine, and a novel classifier (D$1). We explore different algorithm activities with regard to recognizing everyday activities. We also present a technique based on $1 and DTW to enhance the recognition accuracy of ADL. Our result show that we can achieve up to 83 % accuracy for seven different activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parkk, J., Ermes, M., Korpipaa, P., Mantyjarvi, J., Peltola, J., Korhonen, I.: Activity classification using realistic data from wearable sensors. IEEE Trans. Inf. Technol. Biomed. 10(1), 119–128 (2006)

    Google Scholar 

  2. Suryadevara, N.K., Mukhopadhyay, S.C.: ADLs recognition of an elderly person and wellness determination, Smart Sensors, Measurement and Instrumentation, vol. 14, pp. 111–137. Springer (2015)

    Google Scholar 

  3. Yang, J.Y., Wang, J.S., Chen, Y.P.: Using acceleration measurements for activity recognition: an effective learning algorithm for constructing neural classifiers. Pattern Recognit. Lett. 29(16), 2213–2220 (2008) (Elsevier)

    Google Scholar 

  4. Atallah, L., Lo, B., King, R., Yang, G.Z.: Sensor positioning for activity recognition using wearable accelerometers. IEEE Trans. Biomed. Circuits Syst. 5(4), 320-329 (2011)

    Google Scholar 

  5. Min, C.H., Tewfik, A.H.: Automatic characterization and detection of behavioral patterns using linear predictive coding of accelerometer sensor data. In: The Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 220–223 (2010)

    Google Scholar 

  6. Zouba, N., Brémond, F., Thonnat, M., Anfosso, A., Pascual, E., Mallea, P., Guerin, O.: A computer system to monitor older adults at home: preliminary results. Gerontechnology J. 8(3), 129–139 (2009)

    Google Scholar 

  7. Vaswani, N., Roy-Chowdhury, A.K., Chellappa, R.: “Shape Activity”: a continuous-state HMM for moving/deforming shapes with application to abnormal activity detection. IEEE Trans. Image Process. 14(10), 1603–1616 (2005)

    Google Scholar 

  8. Pradeep, T.R., Karthikamani, R.: Abnormal behavior detection in intelligent transport system for intelligent driving. Int. J. Softw. Hardw. Res. Eng. (IJSHRE). 2(5) (2014)

    Google Scholar 

  9. Bhavsar, H., Ganatra, A.: A comparative study of training algorithms for supervised machine learning. Int. J. Soft Comput. Eng. (IJSCE). 2(4), 2231–2307 (2012)

    Google Scholar 

  10. Avilés-Arriaga, H., Sucar-Succar, L., Mendoza-Durán, C., Pineda-Cortés, L.: A comparison of dynamic naive bayesian classifiers and hidden markov models for gesture recognition. J. Appl. Res. Technol. 9(1), 81–102 (2011)

    Google Scholar 

  11. Trigueiros, P., Ribeiro, F., Reis, L.P.: A comparison of machine learning algorithms applied to hand gesture recognition. In: Proceedings of the 7th Iberian IEEE Conference on Information 273 Systems and Technologies (CISTI), pp. 1–6 (2012)

    Google Scholar 

  12. Mannini, A., Sabatini, A.: Machine learning methods for classifying human physical activity from on-body accelerometers. Sensors 10(2), 1154–75 (2010)

    Google Scholar 

  13. Moiz, F., Natoo, P., Derakhshani, R., Leon-Salas, W.D.: A comparative study of classification methods for gesture recognition using a 3-axis accelerometer. In: The 2011 International Joint Conference on IEEE Neural Networks (IJCNN), pp. 2479–2486 (2011)

    Google Scholar 

  14. Ayu, M.A., Ismail, S.A., Abdul Marin, A.F., Mantoro, T.: A comparison study of classifier algorithms for mobile-phone’s accelerometer based activity recognition. Elsevier-International Symposium on Robotics and Intelligent Sensors, vol. 41, pp. 224–229 (2012)

    Google Scholar 

  15. Gao, L., Bourke, A.K., Nelson, J.: A comparison of classifiers for activity recognition using multiple accelerometer-based sensors. In: 2012 IEEE 11th International Conference on Cybernetic Intelligent Systems (CIS), pp. 149–153 (2012)

    Google Scholar 

  16. Wobbrock, J.O., Wilson, A.D., Li, Y.: Gestures without libraries, toolkits or training: a $1 recognizer for user interface prototypes. In: Proceedings of the 20th Annual ACM Symposium on User Interface Software and Technology, pp. 159–168 (2007)

    Google Scholar 

  17. Bruno, B., Mastrogiovanni, F., Sgorbissa, A., Vernazza, T.: Analysis of human behavior recognition algorithms based on acceleration data. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1602–1607 (2013)

    Google Scholar 

  18. Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. Wiley, New York (1973)

    Google Scholar 

  19. Noaman, H.M., Elmougy, S., Ghoneim, A., Hamza, T.: Naive Bayes classifier based Arabic document categorization. In: The Proceedings of the 7th International Conference on Informatics and Systems (INFOS), pp. 1–5 (2010)

    Google Scholar 

  20. Förster, K., Monteleone, S., Calatroni, A., Roggen, D., Tröster, G.: Incremental KNN classifier exploiting correct-error teacher for activity recognition. In: 9th International Conference on IEEE-Machine Learning and Applications (ICMLA), pp. 445–450 (2010)

    Google Scholar 

  21. Dash, M., Liu, H.: Feature selection for classification. Intell. Data Anal. 1(1), 131–156 (1997)

    Google Scholar 

  22. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Mach. Learn. 29, 131–163 (1997)

    Google Scholar 

  23. Burges, C.J.: A tutorial on support vector machines for pattern recognition. Data Mining Knowl. Discov. 2(2), 121–167 (1998)

    Google Scholar 

  24. Jeong, Y.S., Jeong, M.K., Omitaomu, O.A.: Weighted dynamic time warping for time series classification. Pattern Recognit. 44(9), 2231–2240 (2011)

    Google Scholar 

  25. ADL recognition with wrist-worm accelerometer data set. https://archiveics.uci.edu/ml/datasets/dataset+for+ADL+Recognition+with+Wrist-worm+Accelerometer

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salwa O. Slim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Slim, S.O., Atia, A., Mostafa, MS.M. (2016). An Experimental Comparison Between Seven Classification Algorithms for Activity Recognition. In: Gaber, T., Hassanien, A., El-Bendary, N., Dey, N. (eds) The 1st International Conference on Advanced Intelligent System and Informatics (AISI2015), November 28-30, 2015, Beni Suef, Egypt. Advances in Intelligent Systems and Computing, vol 407. Springer, Cham. https://doi.org/10.1007/978-3-319-26690-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26690-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26688-6

  • Online ISBN: 978-3-319-26690-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics