Skip to main content

A Simple Model of the Hand for the Analysis of Object Exploration

  • Chapter
  • First Online:
Human and Robot Hands

Abstract

When hand motions in haptic exploration are investigated, the measurement methods used might actually restrict the movements or the perception. The perception might be reduced because the skin is covered, e.g. with a data glove. Also, the range of possible motions might be limited, e.g. by wired sensors. Here, a model of the hand is proposed that is calculated from data obtained from a small number of sensors (6). The palmar side of the hand is not covered by sensors or tape, leaving the skin free for cutaneous perception. The hand is then modeled as 16 rigid 3D segments, with a hand palm and 5 individual fingers with 3 phalanges each. This model can be used for movement analysis in object exploration and contact point analysis. A validation experiment of an object manipulation task and a contact analysis showed good qualitative agreement of the model with the control measurements. The calculations, assumptions and limitations of the model are discussed in comparison with other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aristidou A, Lasenby J (2010) Motion capture with constrained inverse kinematics for real-time hand tracking. In: 4th International symposium on communications, control, and signal processing, ISCCSP 2010, IEEE, pp 1–5

    Google Scholar 

  2. Aristidou A, Lasenby J (2011) FABRIK: A fast, iterative solver for the Inverse Kinematics problem. Graphical Models 73(5):243–260

    Article  Google Scholar 

  3. Braido P, Zhang X (2004) Quantitative analysis of finger motion coordination in hand manipulative and gestic acts. Hum Mov Sci 22(6):661–678

    Article  Google Scholar 

  4. Bullock IM, Borras J, Dollar AM (2012) Assessing assumptions in kinematic hand models: A review. In: Proceedings of the IEEE RAS and EMBS international conference on biomedical robotics and biomechatronics, IEEE, pp 139–146

    Google Scholar 

  5. Cerveri P, De Momi E, Lopomo N, Baud-Bovy G, Barros RML, Ferrigno G (2007) Finger kinematic modeling and real-time hand motion estimation. Ann Biomed Eng 35(11):1989–2002

    Article  Google Scholar 

  6. Dipietro L, Sabatini AM, Dario P (2008) A survey of glove-based systems and their applications. IEEE Trans Syst Man Cybern Part C: Appl Rev 38(4):461–482

    Article  Google Scholar 

  7. Fu Q, Santello M (2010) Tracking whole hand kinematics using extended Kalman filter. In: 2010 Annual international conference of the IEEE engineering in medicine and biology society, EMBC’10, pp 4606–4609, doi:10.1109/IEMBS.2010.5626513

  8. Gabiccini M, Stillfried G, Marino H, Bianchi M (2013) A data-driven kinematic model of the human hand with soft-tissue artifact compensation mechanism for grasp synergy analysis. In: IEEE International conference on intelligent robots and systems, pp 3738–3745, doi:10.1109/IROS.2013.6696890

  9. Gustus A, Stillfried G, Visser J, Jörntell H, van der Smagt P (2012) Human hand modelling: kinematics, dynamics, applications. Biol Cybernet 106(11–12):741–755

    Article  MathSciNet  MATH  Google Scholar 

  10. Jansen SEM, Bergmann Tiest WM, Kappers AML (2015) Haptic exploratory behavior during object discrimination: A novel automatic annotation method. Plos One 10(2):e0117,017, doi:10.1371/journal.pone.0117017

    Google Scholar 

  11. Jansen SEM, Bergmann Tiest WM, Kappers AML (2013) Identifying haptic exploratory procedures by analyzing hand dynamics and contact force. IEEE Trans Haptics 6(4):464–472

    Article  Google Scholar 

  12. Kahrimanovic M, Bergmann Tiest WM, Kappers AML (2011) Discrimination thresholds for haptic perception of volume, surface area, and weight. Atten Percept Psychophys 73(8):2649–2656

    Article  Google Scholar 

  13. Kalagher H, Jones SS (2011) Young children’s haptic exploratory procedures. J Exp Child Psychol 110(4):592–602

    Article  Google Scholar 

  14. Klatzky RL, Lederman SJ, Reed C (1989) Haptic integration of object properties—texture, hardness, and planar contour. J Exp Psychol Hum Percept Perform 15(1):45–57

    Article  Google Scholar 

  15. Lederman SJ, Klatzky RL (1987) Hand movements—a window into haptic object recognition. Cogn Psychol 19(3):342–368

    Article  Google Scholar 

  16. Lien CC, Huang CL (1998) Model-based articulated hand motion tracking for gesture recognition. Image Vision Comput 16(2):121–134

    Article  Google Scholar 

  17. Liu H (2011) Exploring human hand capabilities into embedded multifingered object manipulation. IEEE Trans Ind Inform 7(3):389–398

    Article  Google Scholar 

  18. Miyata N, Kouchi M, Hurihara T, Mochimaru M (2004) Modeling of human hand link structure from optical motion capture data. Intell Robots Syst 3:2129–2135

    Google Scholar 

  19. Nataraj R, Li ZMM (2013) Robust identification of three-dimensional thumb and index finger kinematics with a minimal set of markers. J Biomech Eng 135(9):91002

    Google Scholar 

  20. Overvliet KE, Smeets JBJ, Brenner E (2007) Haptic search with finger movements: using more fingers does not necessarily reduce search times. Exp Brain Res 182(3):427–434

    Article  Google Scholar 

  21. Plaisier MA, Bergmann Tiest WM, Kappers AML (2008) Haptic pop-out in a hand sweep. Acta Psychol 128(2):368–377

    Article  Google Scholar 

  22. Plaisier MA, Bergmann Tiest WM, Kappers AML (2009a) One, two, three, many—Subitizing in active touch. Acta Psychol 131(2):163–170

    Article  Google Scholar 

  23. Plaisier MA, Bergmann Tiest WM, Kappers AML (2009b) Salient features in 3-D haptic shape perception. Atten Percept Psychophys 71(2):421–430

    Article  Google Scholar 

  24. Sancho-Bru JL, Mora MC, León BE, Pérez-González A, Iserte JL, Morales A (2014) Grasp modelling with a biomechanical model of the hand. Comput Methods Biomech Biomed Eng 17(4):297–310

    Article  Google Scholar 

  25. Smith AM, Gosselin G, Houde B (2002) Deployment of fingertip forces in tactile exploration. Exp Brain Res 147(2):209–218

    Article  Google Scholar 

  26. Thakur PH, Bastian AJ, Hsiao SS (2008) Multidigit movement synergies of the human hand in an unconstrained haptic exploration task. J Neurosci 28(6):1271–1281

    Article  Google Scholar 

  27. Todorov E (2007) Probabilistic inference of multijoint movements, skeletal parameters and marker attachments from diverse motion capture data. IEEE Trans Biomed Eng 54(11):1927–1939. doi:10.1109/TBME.2007.903521

    Article  Google Scholar 

  28. van Polanen V, Bergmann Tiest WM, Kappers AML (2012a) Haptic pop-out of movable stimuli. Atten Percept Psychophys 74(1):204–215

    Article  Google Scholar 

  29. van Polanen V, Bergmann Tiest WM, Kappers AML (2014) Target contact and exploration strategies in haptic search. Sci Reports 4:6254. doi:10.1038/srep06254

    Article  Google Scholar 

  30. van Polanen V, Bergmann Tiest WM, Kappers AML (2012b) Haptic search for hard and soft spheres. PLOS ONE 7(10):e45298

    Google Scholar 

  31. Withagen A, Kappers AML, Vervloed MPJ, Knoors H, Verhoeven L (2013) The use of exploratory procedures by blind and sighted adults and children. Atten Percept Psychophys 75(7):1451–1464

    Article  Google Scholar 

  32. Wu YWY, Huang T (1999) Capturing articulated human hand motion: a divide-and-conquer approach. In: Proceedings of the seventh IEEE International conference on computer vision, IEEE 1:606–611

    Google Scholar 

  33. Zhang X, Lee SW, Braido P (2003) Determining finger segmental centers of rotation in flexion-extension based on surface marker measurement. J Biomech 36(8):1097–1102

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Commission with the Collaborative Project no. 248587, “THE Hand Embodied”, within the FP7-ICT-2009-4-2-1 program “Cognitive Systems and Robotics”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vonne van Polanen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

van Polanen, V., Bergmann Tiest, W.M., Kappers, A.M.L. (2016). A Simple Model of the Hand for the Analysis of Object Exploration. In: Bianchi, M., Moscatelli, A. (eds) Human and Robot Hands. Springer Series on Touch and Haptic Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-26706-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26706-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26705-0

  • Online ISBN: 978-3-319-26706-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics