Skip to main content

Ranking Business Scorecard Factor Using Intuitionistic Fuzzy Analytical Hierarchy Process with Fuzzy Delphi Method in Automobile Sector

  • Conference paper
  • First Online:
Mining Intelligence and Knowledge Exploration (MIKE 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9468))

Abstract

Business scorecard is an integral part of human resource management in an industry or an organization and used to strengthen the functionality of the organization. It plays a vital role in promoting the business. Exploring the uncertainty creeping into various factors in business scorecard is an interesting challenge. In this work, we applied Intuitionistic Fuzzy Analytical Hierarchy Process (IFAHP) with Fuzzy Delphi method to analyse the uncertainty factors in business scorecard. Also we explore the importance of various factors by means of ranking using IFAHPwith Fuzzy Delphi method. The ranking scores are further used to strengthen the business scorecard.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Klir, G.J.: Fuzzy Set and Fuzzy Logic Theory and Application. PTR Publisher, New York (1995)

    Google Scholar 

  2. Xu, Z., Liao, H.: Intuitionistic fuzzy analytic hierarchy process. IEEE Trans. Fuzzy Syst. 22(4), 749–761 (2014)

    Article  Google Scholar 

  3. Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1), 87–96 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  4. Szmidt, E., Kacprzyk, J.: Distances between intuitionistic fuzzy sets. Fuzzy Sets Syst. 114(3), 505–518 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Deschrijver, G., Cornelis, C., Kerre, E.: On the representation of intuitionistic fuzzy t-norms and t-conorms. Notes Intuit. Fuzzy Sets 8(3), 1–10 (2002)

    MATH  MathSciNet  Google Scholar 

  6. Kaufmann, A., Gupta, M.M.: Fuzzy Mathematical Models in Engineering and Management Science. Elsevier Science Inc., New York (1988)

    MATH  Google Scholar 

  7. Carlsson, C., Fullr, R.: On possibilistic mean value and variance of fuzzy numbers. Fuzzy Sets Syst. 122(2), 315–326 (2001)

    Article  MATH  Google Scholar 

  8. Saaty, T.: The Analytic Hierarchy Process, Planning, Priority Setting, Resource Allocation. McGraw-Hill, New york (1980)

    MATH  Google Scholar 

  9. Akram, M., Shahzad, S., Butt, A., Khaliq, A.: Intuitionistic fuzzy logic control for heater fans. Math. Comput. Sci. 7(3), 367–378 (2013)

    Article  MATH  Google Scholar 

  10. Szmidt, E., Kacprzyk, J.: Intuitionistic fuzzy sets in some medical applications. In: Reusch, B. (ed.) Fuzzy Days 2001. LNCS, vol. 2206, pp. 148–151. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  11. Sadiq, R., Tesfamariam, S.: Environmental decision-making under uncertainty using intuitionistic fuzzy analytic hierarchy process (IF-AHP). Stoch. Env. Res. Risk Assess. 23, 75–91 (2009)

    Article  MathSciNet  Google Scholar 

  12. Rajaprakash, S., Ponnusamy, R., Pandurangan, J.: Determining the customer satisfaction in automobile sector using the intuitionistic fuzzy analytical hierarchy process. In: Prasath, R., O’Reilly, P., Kathirvalavakumar, T. (eds.) MIKE 2014. LNCS, vol. 8891, pp. 239–255. Springer, Heidelberg (2014)

    Google Scholar 

  13. Chen, Y.C., Yu, T.H., Tsui, P.L., Lee, C.S.: A fuzzy AHP approach to construct international hotel spa atmosphere evaluation model. Qual. Quant. 48(2), 645–657 (2014)

    Article  Google Scholar 

  14. Catak, F.O., Karabas, S., Yildirim, S.: Fuzzy analytic hierarchy based DBMS selection in turkish national identity card management project. Int. J. Inf. Sci. Tech. (IJIST) 2(4), 29–38 (2012)

    Google Scholar 

  15. Kong, F., Liu, H.: Applying fuzzy analytic hierarchy process to evaluate success factors of e-commerce. Int. J. Inf. Syst. Sci. 1(3), 406–412 (2005)

    MATH  Google Scholar 

  16. Izadikhah, M.: Group decision making process for supplier selection with topsis method under interval-valued intuitionistic fuzzy numbers. Adv. Fuzzy Sys. 2012, 1 (2012)

    Article  MathSciNet  Google Scholar 

  17. Hsu, Y.L., Lee, C.H., Kreng, V.B.: The application of fuzzy delphi method and fuzzy ahp in lubricant regenerative technology selection. Expert Syst. Appl. 37(1), 419–425 (2010)

    Article  Google Scholar 

  18. Abdullah, L., Jaafar, S., Taib, I.: Intuitionistic fuzzy analytic hierarchy process approach in ranking of human capital indicators. J. Appl. Sci. 13(3), 423–429 (2013)

    Article  Google Scholar 

  19. S.Rajaprakash, R.ponnusamy, J.: Intuitionistic fuzzy analytical hierarchy process with fuzzy delphi method. Global journal of pure and applied mathematics (3) (2015) 1677–1697

    Google Scholar 

  20. Roy, T.K., Garai, A.: Intuitionistic fuzzy delphi method: More realistic and interactive forecasting tool. Notes Intuit. Fuzzy Sets 18(50), 37–50 (2012)

    Google Scholar 

  21. Xu, Z.: Intuitionistic preference relations and their application in group decision making. Inf. Sci. 177(11), 2363–2379 (2007)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Rajaprakash .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Rajaprakash, S., Ponnusamy, R. (2015). Ranking Business Scorecard Factor Using Intuitionistic Fuzzy Analytical Hierarchy Process with Fuzzy Delphi Method in Automobile Sector. In: Prasath, R., Vuppala, A., Kathirvalavakumar, T. (eds) Mining Intelligence and Knowledge Exploration. MIKE 2015. Lecture Notes in Computer Science(), vol 9468. Springer, Cham. https://doi.org/10.1007/978-3-319-26832-3_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26832-3_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26831-6

  • Online ISBN: 978-3-319-26832-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics