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We study distributed agreement in synchronous directed dynamic networks, where an 
omniscient message adversary controls the presence/absence of communication links. We 
prove that consensus is impossible under a message adversary that guarantees weak 
connectivity only, and introduce eventually vertex-stable source components (VSSCs) as 
a means for circumventing this impossibility: A VSSC(k, d) message adversary guarantees 
that, eventually, there is an interval of d consecutive rounds where every communication 
graph contains at most k strongly connected components consisting of the same processes 
(with possibly varying interconnect topology), which have no incoming links from outside 
processes. We present a consensus algorithm that works correctly under a VSSC(1, 4E + 2)

message adversary, where E is the dynamic network depth. Our algorithm maintains local 
estimates of the communication graphs, and applies techniques for detecting network 
stability and univalent system configurations. Several related impossibility results and 
lower bounds, in particular, that neither a VSSC(1, E − 1) message adversary nor a 
VSSC(2, ∞) one allow to solve consensus, reveal that there is not much hope to deal 
with (much) stronger message adversaries here.
However, we show that gracefully degrading consensus, which degrades to general k-set 
agreement in case of unfavorable network conditions, allows to cope with stronger 
message adversaries: We provide a k-universal k-set agreement algorithm, where the 
number of system-wide decision values k is not encoded in the algorithm, but rather 
determined by the actual power of the message adversary in a run: Our algorithm 
guarantees at most k decision values under a VSSC(n,d) + MAJINF(k) message adversary, 
which combines VSSC(n, d) (with some small value of d, ensuring termination) with some 
information flow guarantee MAJINF(k) between certain VSSCs (ensuring k-agreement). 
Since related impossibility results reveal that a VSSC(k, d) message adversary is too 
strong for solving k-set agreement and that some information flow between VSSCs is 
mandatory for this purpose as well, our results provide a significant step towards the exact 
solvability/impossibility border of general k-set agreement in directed dynamic networks.
Finally, we relate (the eventually-forever-variants of) our message adversaries to failure 
detectors. It turns out that even though VSSC(1, ∞) allows to solve consensus and to 
implement the � failure detector, it does not allow to implement �. This contrasts the 
fact that, in asynchronous message-passing systems with a majority of process crashes, 
(�, �) is a weakest failure detector for solving consensus. Similarly, although the message 
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adversary VSSC(n,d) + MAJINF(k) allows to solve k-set agreement, it does not allow to 
implement the failure detector �k , which is known to be necessary for k-set agreement in 
asynchronous message-passing systems with a majority of process crashes. Consequently, 
it is not possible to adapt failure-detector-based algorithms to work in conjunction with 
our message adversaries.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Dynamic networks such as wireless sensor networks, mobile ad-hoc networks and vehicle area networks, are becoming 
ubiquitous nowadays. The primary properties of such networks are sets of participants (called processes in the sequel) that 
are a priori unknown and potentially changing, time-varying connectivity between processes, and the absence of a central 
control. Dynamic networks is an important and very active area of research [1].

Accurately modeling dynamic networks is challenging, for several reasons: First, process mobility, process crashes/re-
coveries, deliberate joins/leaves, and peculiarities in the low-level system design like duty-cycling (used to save energy in 
wireless sensor networks) make static communication topologies, as typically used in classic network models, inadequate 
for dynamic networks. Certain instances of dynamic networks, in particular, peer-to-peer networks [2] and inter-vehicle 
area networks [3], even suffer from significant churn, i.e., a large number of processes that can appear/disappear over time, 
possibly in the presence of faulty processes [4], and hence consist of a potentially unbounded total number of participants 
over time. More classic applications like mobile ad-hoc networks (MANETS) [5], wireless sensor networks [6,7] and disaster 
relief applications [8] typically consist of a bounded (but typically unknown) total number of processes.

Second, communication in many dynamic networks, in particular, in wireless networks like MANETS, is inherently broad-
cast: When a process transmits, then every other process within its transmission range will observe this transmission — 
either by legitimately receiving the message or as some form of interference. This creates quite irregular communication 
behavior, such as capture effects and near-far problems [9], where certain (nearby) transmitters may “lock” a receiver and 
thus prohibit the reception of messages from other senders. Consequently, the “health” of a wireless link between two pro-
cesses may vary heavily over time [10]. For low-bandwidth wireless transceivers, an acceptable link quality usually even 
requires communication scheduling [11] (e.g., time-slotted communication) for reducing the mutual interference. Overall, 
this results in a frequently changing spatial distribution of pairs of nodes that can communicate at a given point in time.

As a consequence, many dynamic networks, in particular, wireless ones [12], are not adequately modeled by means of 
bidirectional links. Fading and interference phenomenons [13,14], including capture effects and near-far problems, are local
effects that affect only the receiver of a wireless link: Given that the sender, which is also the receiver of the reverse link, 
resides at a different location, the two receivers are likely to experience very different levels of fading and interference [15]. 
This effect is even more pronounced in the case of time-slotted communication, where forward and backward links are 
used at different times. Consequently, the existence of asymmetric communication links cannot be ruled out in practice: 
According to [16], 80% of the links in a typical wireless network are sometimes asymmetric.

Despite these facts, most of the dynamic network research we are aware of assumes bidirectional links [17,18]. The 
obvious advantage of this abstraction is simplicity of the algorithm design, as strong communication guarantees obviously 
make this task easier. Moreover, it allows the re-use of existing techniques for wireline networks, which naturally support 
bidirectional communication. However, there are also major disadvantages of this convenient abstraction: First, for dynamic 
networks that operate in environments with unfavorable communication conditions, like in disaster relief applications or, 
more generally, in settings with various interferers and obstacles that severely inhibit communication, bidirectional links 
may simply not be achievable. Implementing distributed services in such settings thus require algorithms that do not need 
bidirectional links right from the outset. Second, the entire system needs to be engineered in such a way that bidirec-
tional single-hop communication can be provided within bounded time. This typically requires relatively dense networks 
and/or processes that are equipped with powerful communication interfaces, which incur significant cost when compared 
to sparser networks or/and cheaper or more energy-saving communication devices. And last but not least, if directed single-
hop communication was already sufficient to reach some desired goal (say, reaching some destination process) via multi-hop 
messages, waiting for guaranteed single-hop bidirectional communication would incur a potentially significant, unnecessary 
delay. Obviously, in such settings, algorithmic solutions that do not need bidirectional single-hop communication could be 
significantly faster.

In this paper, we thus restrict our attention to dynamic networks consisting of an unknown but bounded total number 
of processes, which are interconnected by directed communication links. The system is assumed to be synchronous,1 hence 
time is measured in discrete rounds that allow the processes to exchange at most one message. Time-varying communication 

1 As synchronized clocks are typically required for basic communication in wireless systems anyway, e.g., for transmission scheduling and sender/receiver 
synchronization, this is not an unrealistic assumption: Global synchrony can be implemented directly at low system levels, e.g., via IEEE 1588 network time 
synchronization or GPS receivers, or at higher levels via time synchronization protocols like FTSP [19] or even synchronizers [20].
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is modeled as a sequence of communication graphs, which contain a directed edge between two processes if the message 
sent in the corresponding round is successfully received. A bidirectional link is modeled by a pair of directed links that are 
considered independent of each other here.

A natural approach to build robust services despite the dynamic nature of such systems is to use some sort of distributed 
agreement on certain system parameters like action schedules and operating modes, as well as on application-level issues: 
Such a solution allows to use arbitrary algorithms for generating local proposals, which are supplied as inputs to a consensus 
algorithm that finally selects one of them consistently at all processes. As opposed to master-slave-based solutions, this 
approach avoids the single point of failure formed by the process acting as the master.

The ability to reach system-wide consensus is hence the most convenient abstraction one could provide here. The first 
major contribution of our paper is hence a suite of impossibility results and a consensus algorithm for directed dynamic 
networks that, to the best of our knowledge, works under the weakest communication guarantees sufficient for consensus 
known so far.

Obviously, however, one cannot reasonably assume that every dynamic network always provides sufficiently strong com-
munication guarantees for solving consensus. Fortunately, weaker forms of distributed agreement are sufficient for certain 
applications. In case of determining communication schedules [11], for example, which are used for staggering message 
transmission of nearby nodes in time to decrease mutual interference, it usually suffices if those processes that have to 
communicate regularly with each other (e.g., for implementing a distributed service within a partition) agree on their 
schedule. A more high-level example would be agreement on rescue team membership [21] in disaster relief applications.

For such applications, suitably designed k-set agreement algorithms [22], where processes must agree on at most k
different values system-wide, are a viable alternative to consensus (k = 1). This is particularly true if such a k-set agreement 
(i) respects partitions, in the sense that processes in the same (single) partition decide on the same value, and (ii) is 
gracefully degrading, in the sense that the actual number k of different decision values depends on the actual network 
topology in the execution: If the network is well-behaved, the resulting k is small (ideally, k = 1), whereas k may increase 
under unfavorable conditions. Whereas any gracefully degrading algorithm must be k-universal, i.e., unaware of any a priori 
information on k, it should ideally also be k-optimal, i.e., produce the smallest number k of different decisions possible.

The second major contribution of our paper are several impossibility results for k-set agreement in directed dynamic net-
works, as well as the, to the best of our knowledge, first instance of a worst-case k-optimal k-set agreement, i.e., a consensus 
algorithm that indeed degrades gracefully to general k-set agreement.

Detailed contributions and paper organization.
In Section 3, we introduce our detailed system model, which builds upon and extends the message adversary notation 

used in [23]. It consists of an (unknown) number n of processes, where communication is modeled by a sequence of directed 
communication graphs, one for each round: If some edge (p, q) is present in the communication graph Gr of round r, then 
process q has received the message sent to it by p in round r. The message adversary determines the set of links actually 
present in every Gr , according to certain constraints that may be viewed as network assumptions.

With respect to consensus, we provide the following contributions:

(1) In Section 4, we show that communication graphs that are weakly connected in every round are not sufficient for 
solving consensus, and introduce an additional assumption that allows to overcome this impossibility. For this, we 
rely on the graph-theoretic notion of a source component (strongly connected component that has no incoming edges 
from vertices outside) and its dynamic counterpart, the vertex-stable source component (VSSC), which describes a set of 
vertices, constituting a source component for multiple consecutive rounds. We note that every directed graph has at 
least one source component and that the detailed connection topology of a VSSC may change arbitrarily from round 
to round, as long as its vertices still form a source component in the communication graph. Our message adversary 
VSSC(d) requires that the communication graph in every round is weakly connected and has a single (possibly changing) 
source component. Since this assumption is still too weak for solving consensus, VSSC(d) also requires that, eventually, 
there will be d consecutive rounds where some source component is vertex-stable. In Section 5, we provide a consensus 
algorithm that works in this model, and prove its correctness. Our algorithm requires a window of stability of d = 4E +2
rounds, where E � n − 1 is the dynamic network depth of the network (= the number of rounds required to reach all 
processes in the network from every process in the vertex-stable source component via multi-hop communication).

(2) In Section 4, we also show that every deterministic consensus or leader election algorithm needs to know (a bound 
on) E under VSSC(d), i.e., that there is no universal algorithm. In addition, we prove that consensus is impossible both 
under VSSC(E − 1) and VSSC(2, ∞) (VSSC(x, y) is essentially the same as VSSC(y), except that it allows up to x source 
components per round). Therefore, E is a lower bound for the window of stability of VSSCs if vertex stability of source 
components is the only guarantee of the message adversary. Interestingly, the resulting dynamic networks fall between 
the weakest and second-weakest category in the classification of [24], and neither allow to solve classic problems such 
as reliable broadcast, atomic broadcast, or causal-order broadcast nor counting, k-verification, k-token dissemination, 
all-to-all token dissemination, and k-committee election.

With respect to k-set agreement and gracefully degrading consensus, we provide the following contributions:
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(3) In Section 6, we provide a fairly weak natural message adversary VSSC(k, d) that is still too strong for solving k-set 
agreement: It reveals that the restriction to at most k simultaneous VSSCs in every round is not sufficient for solving 
k-set agreement if just a single VSSC is vertex-stable for less than n − k rounds: A generic reduction of k-set agreement 
to consensus introduced in [25], in conjunction with certain bivalence arguments, is used to construct a non-terminating 
run in this case. Moreover, eventual stability of all VSSCs is also not enough for solving k-set agreement, not even when it 
is guaranteed that (substantially) less than k VSSCs exist simultaneously. The latter is a consequence of some adversarial 
partitioning over time, which could happen in our dynamic networks.

(4) In Section 7, we show that the message adversary VSSC(n,d) + MAJINF(k), which combines VSSC(n, d) (ensuring 
termination) with some information flow guarantee MAJINF(k) between certain VSSCs (ensuring k-agreement), is suf-
ficient for solving k-set agreement. Basically, MAJINF(k) guarantees that if we choose k + 1 VSSCs, a majority influence
chain between at least two of the chosen VSSCs exists. Despite being fairly strong, the resulting message adversary 
VSSC(n,d)+MAJINF(k) allows to implement a k-universal k-set agreement algorithm, which naturally respects partitions 
and is worst-case k-optimal, in the sense that no algorithm can solve k − 1-set agreement under VSSC(n,d) + MAJINF(k). 
To the best of our knowledge, it is the first gracefully degrading consensus algorithm proposed so far.

Finally, in the spirit of [23], we include a relation of our message adversaries to failure detectors. Whereas such a 
comparison obviously only makes sense for the eventually-forever-variants VSSC(∞) and VSSC(n,∞) + MAJINF(k) of our 
message adversaries, it provides some very interesting insights:

(5) In Section 8, we show that even though VSSC(1, ∞) allows to solve consensus and to implement the � failure detector, 
it does not allow to implement �. This contrasts the fact that, in asynchronous message-passing systems with a majority 
of process crashes, (�, �) is a weakest failure detector for solving consensus. Similarly, although the message adversary 
VSSC(n,∞) + MAJINF(k) allows to solve k-set agreement, it does not allow to implement the failure detector �k . Again, 
this is in contrast to the fact that �k is known to be necessary for k-set agreement in asynchronous message-passing 
systems with a majority of process crashes. One of the consequences of these findings is that it is not possible to adapt 
failure-detector-based algorithms to work in conjunction with our message adversaries.

2. Related work

Dynamic networks have been studied intensively in research (see the overview by Kuhn and Oshman [1] and the ref-
erences therein). Besides work on peer-to-peer networks like [2], where the dynamicity of nodes (churn) is the primary 
concern, different approaches for modeling dynamic connectivity have been proposed, both in the networking context and 
in the context of classic distributed computing. Casteigts et al. [24] introduced a comprehensive classification of time-varying 
graph models.
Models. There is a rich body of literature on dynamic graph models going back to [26], which also mentions for the first 
time modeling a dynamic graph as a sequence of static graphs. A more recent paper using this approach is [17], where 
distributed computations are organized in lock-step synchronous rounds. Communication is described by a sequence of 
per-round communication graphs, which must adhere to certain network assumptions (like T -interval connectivity, which 
says that there is a common subgraph in any interval of T rounds). Afek and Gafni [27] introduced message adversaries for 
specifying network assumptions in this context, and used them for relating problems solvable in wait-free read-write shared 
memory systems to those solvable in message-passing systems. Raynal and Stainer [23] also used message adversaries for 
exploring the relationship between round-based models and failure detectors.

Besides time-varying graphs, several alternative approaches that consider missing messages as failures have also been 
proposed in the past: Moving omission failures [28], round-by-round fault detectors [29], the heard-of model [30] and the 
perception-based failure model [31].
Agreement problems. Agreement problems in dynamic networks with undirected communication graphs have been studied 
in [18,32,33]; agreement in directed graphs has been considered in [34,35,27,23,36–39].

In particular, the work by Kuhn et al. [18] focuses on the �-coordinated consensus problem, which extends consensus 
by requiring all processes to decide within � rounds of the first decision. Since they consider only undirected graphs that 
are connected in every round, without node failures, solving consensus is always possible. In terms of the classes of [24], 
the model of [40] is in one of the strongest classes (Class 10) in which every process is always reachable by every other 
process. On the other hand, [34,36] do consider directed graphs, but restrict the dynamicity by not allowing stabilizing 
behavior. Consequently, they also belong to quite strong classes of network assumptions in [24]. In sharp contrast, the 
message adversary tolerated by our algorithms does not guarantee bidirectional (multi-hop) communication between all 
processes, hence falls between the weakest and second weakest class of models defined in [24].

The solvability/impossibility border of consensus under message adversaries that support eventual stabilization has been 
explored in [35,37–39]. As it turned out, consensus can be solved for graph sequences where the set of graphs occurring 
in the sequence would render consensus impossible under an oblivious message adversary [28,41]. Whereas [35,37] are 
subsumed by the present paper, the algorithms presented in [38,39] allow to solve consensus for even shorter periods of 
stability.
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The leader election problem in dynamic networks has been studied in [33,42], where the adversary controls the mobility 
of nodes in a wireless ad-hoc network. This induces dynamic changes of the (undirected) network graph in every round 
and requires any leader election algorithm to take �(Dn) rounds in the worst case, where D is a bound on information 
propagation.

Regarding k-set agreement in dynamic networks, we are not aware of any previous work except [43], where bidirectional 
links are assumed, and our previous paper [44], where we assumed the existence of an underlying static skeleton graph (a 
non-empty common intersection of the communication graphs of all rounds) with at most k static source components. Note 
that this essentially implies a directed dynamic network with a static core. By contrast, in this paper, we allow the directed 
communication graphs to be fully dynamic. In [45], we provided k-set agreement algorithms for partially synchronous 
systems with weak synchrony requirements.
Degrading consensus problems. We are also not aware of related work exploring gracefully degrading consensus or 
k-universal k-set agreement. However, there have been several attempts to weaken the semantics of consensus, in order 
to cope with partitionable systems and excessive faults. Vaidya and Pradhan introduced the notion of degradable agreement 
[46], where processes are allowed to also decide on a (fixed) default value in case of excessive faults. The almost everywhere 
agreement problem introduced by [47] allows a small linear fraction of processes to remain undecided. Aguilera et. al. [48]
considered quiescent consensus in partitionable systems, which requires processes outside the majority partition not to ter-
minate. None of these approaches is comparable to gracefully degrading k-set agreement, however: On the one hand, we 
allow more different decisions, on the other hand, all correct processes are required to decide and every decision must be 
the initial value of some process.

Ingram et. al. [49] presented an asynchronous leader election algorithm for dynamic systems, where every component 
is guaranteed to elect a leader of its own. Whereas this behavior clearly matches our definition of graceful degradation, 
contrary to decisions, leader assignments are revocable and the algorithm of [49] is guaranteed to successfully elect a leader 
only once the topology eventually stabilizes.

3. Model

We consider a synchronous distributed system made up of a fixed set of distributed processes � with |�| = n � 2, which 
have fixed unique ids and communicate via unreliable message passing. Processes will be denoted by pi , p j etc.

Similar to the LOCAL model [50], we assume that processes are deterministic state machines that organize their 
computations as an infinite sequence of communication-closed [51] lock-step rounds. For every pi ∈ �, si denotes its local 
state, taken from a potentially infinite state space. It also comprises an input variable xi , which holds some fixed initial 
value vi at the beginning of an execution, and an output variable yi , which is initially undefined (⊥) and can be changed 
to some value �= ⊥ exactly once. sr

i , r � 1, denotes the state at the end of round r, s0
i denotes the initial state. In each 

round r > 0, each process performs three steps in the following order: First pi broadcast a message, then receives a subset 
of the messages sent in this round, and finally updates the state from sr−1

i to sr
i , based on the messages received and sr−1

i . 
Note that processes do not know, without receiving explicit feedback in later rounds, which processes received their round 
r broadcast.

The evolving nature of the network topology is modeled as an infinite sequence of simple directed graphs G1, G2, . . . , 
which is determined by an omniscient message adversary [23,27] that may view the processes’ internal states at any time. 
Given such a graph sequence and a set of initial states {s0

i |pi ∈ �}, the corresponding run is the execution of system where 
Gr is used as the round r communication graph. For our deterministic algorithms, a run is completely determined by the 
initial states of the processes and the sequence of communication graphs.

Definition 1 (Communication graph). A communication graph G = 〈V , E〉 is a simple directed graph on node set V = �. 
An edge (pi → p j) is in E if and only if p j successfully receives pi ’s message. For a given run, we denote the round r
communication graph by Gr = 〈V , Er〉. The set N r

j denotes p j ’s in-neighbors in Gr (excluding p j).

Note that we will sloppily write (pi → p j) ∈ Gr to denote (pi → p j) ∈ Er , as well as pi ∈ Gr to denote pi ∈ V = �. We 
emphasize again that pi does not have any a priori knowledge of its neighbors, i.e., pi does not know who receives its round 
r broadcast, and does not know who it will receive from in round r before its round r computation.

Fig. 1 shows a sequence of communication graphs for a network of 5 processes, for rounds 1 to 3.
Since every Gr can range arbitrarily from n isolated nodes to a fully connected graph, there is no hope to solve any 

non-trivial agreement problem without restricting the power of the adversary to drop messages2 to some extent. Inspired 
by [23], we encapsulate a particular restriction, e.g., that every communication graph must be weakly connected, by means 
of a particular message adversary. Note that Definition 2 generalizes the notation introduced in [27], which just specified the 
set of communication graphs the adversary may choose from in every round, to sets of sequences of communication graphs.

2 Even though the adversary can only affect communication in our model, it is also possible to model classic send and/or receive omission process 
failures [52] (and thereby also crash failures): A process that is send/receive omission faulty in round r has no outgoing/incoming edges to/from some other 
processes in Gr .
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Fig. 1. Graph sequence with a single source component per round.

Definition 2 (Message adversary). A message adversary Adv (for our system � of n processes) is a set of sequences of 
communication graphs (Gr)r>0. A particular sequence of communication graphs (Gr)r>0 is feasible for Adv, if (Gr)r>0 ∈ Adv.

Informally, we say that some message adversary Adv guarantees some property (like “all graphs are weakly connected”), 
called a network assumption, if every (Gr)r>0 ∈ Adv satisfies this property.

Complementing the traditional approach of partially ordering system models or unreliable failure detectors [53] via their 
problem solving power (task implementability), the restricted nature of our message adversaries allows us to employ a 
much simpler and direct way of relating those: For a fixed system � of n processes, we say that A is stronger than B if 
and only if A ⊇ B , i.e., if A can generate at least the communication graph sequences that can be generated by B . As a 
consequence, an algorithm that works correctly under message adversary A will also work under B ⊆ A.

3.1. Consensus and k-set agreement

To formally introduce agreement problems, we consider some finite value domain V with ⊥ �= V , and say that pi has 
decided in round r (or state sr

i is decided) if yr
i = v �= ⊥ in round r. If yr−1

i = ⊥ and yr
i = v �= ⊥, we say that pi decides

in round r on v . Otherwise, it is (still) undecided. Note that, in the context of the particular algorithms introduced in later 
sections, we will sometimes also assign additional attributes to states.

Definition 3 (Consensus). Algorithm A solves consensus, if the following properties hold in every run of A:

(Agreement) If process pi decides on v and p j decides on v ′ , then v = v ′ .
(Validity) If process pi decides on v , then v is some p j ’s initial value x j .
(Termination) Every process must eventually decide.

For the k-set agreement problem [22], we assume that both |V| > k and n > k to rule out trivial solutions:

Definition 4 (k-set agreement). Algorithm A solves k-set agreement, if the following properties hold in every run of A:

(k-Agreement) At most k different decision values are obtained system-wide in any run.
(Validity) If process pi decides on v , then v is some p j ’s initial value x j .
(Termination) Every process must eventually decide.

Clearly, consensus is the special case of 1-set agreement; set agreement is a short-hand for n − 1-set agreement.
We call a consensus or k-set agreement algorithm universal, if it does not have any a priori knowledge of the network 

(and hence of n). A k-set agreement algorithm is called k-universal, if it is universal and does not even require a priori 
knowledge of k.

3.2. Influence in dynamic networks

We will now establish what it means for a process pi to influence some process p j , which is central in our paper. 
Note carefully that such an influence is always paired with time: In the spirit of [54,18], for a given sequence (Gr )r>0 of 
communication graphs, we say that process pi at the end of round r influences p j in round s, denoted as sr

i � ss
j , if the 

state of process pi at the end of round r could have affected the state of process p j at the end of round s. Clearly, in 
our system model, this requires process pi to send a message in round r + 1 or later that (directly or indirectly, via some 
message chain) reaches p j at the latest in round s, so that it could affect its state ss

j reached at the end of round s.
Formally, this is defined via the influence relation given in Definition 5.
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Definition 5 (Influence relation). For a given run with sequence of communication graphs (Gr)r>0, the influence relation is the 
smallest relation that satisfies the following conditions for processes pi , p j, pk ∈ � and rounds r, r′, r′′ > 0:

LOCALITY: sr
i � sr+1

i

NEIGHBORHOOD: (pi → p j) ∈ Gr+1 ⇒ sr
i � sr+1

j

TRANSITIVITY: sr
i � sr′

j and sr′
j � sr′′

k ⇒ sr
i � sr′′

k

3.3. Vertex-stable source components

We will now define the cornerstones of the message adversaries used in the remaining paper. Message adversaries such 
as VSSC(d) (Definition 12) and VSSC(k, d) (Definition 15) will be defined via the properties of the sequences of feasible 
communication graphs. Informally, most of those will rest on the pivotal concept of source components, which are strongly 
connected components in Gr without incoming edges from processes outside the component. The graphs generated by our 
message adversaries will be required to eventually guarantee source components that are vertex-stable, i.e., consist of the 
same set of nodes (with possibly varying interconnect) during a sufficiently large number of consecutive rounds. It will turn 
out that vertex-stability guarantees that eventually all members receive information from each other.

Definition 6 (Source component). A source component S �= ∅ of a graph G is the set of vertices of a strongly connected compo-
nent in G that has no incoming edges from other components, formally ∀pi ∈ S, ∀p j ∈ G : (p j → pi) ∈ G ⇒ p j ∈ S .

By contracting strongly connected components (SCCs), it is easy to see that every weakly connected directed simple 
graph G has at least one source component, see Lemma 4. Hence, if G has k source components, it has at most k weakly 
connected components.

We now introduce vertex-stable source components as source components that remain the same for multiple rounds in 
a given graph sequence, albeit their actual interconnection topology may vary.

Definition 7 (Vertex-stable source component). Given a graph sequence (Gr)r>0, we say that the consecutive sub-sequence 
of communication graphs Gr for r ∈ I = [a, b], b � a, contains an I-vertex-stable source component S , if, for r ∈ I , every Gr

contains S as a source component.

We abbreviate I-vertex-stable source component as I-VSSC, and write |I|-VSSC if only the length of I matters. Note 
carefully that we assume |I| = b − a + 1 here, since I = [a, b] ranges from the beginning of round a to the end of round b; 
hence, I = [r, r] is not empty but rather represents round r.

The most important property of a I-VSSC is that information is guaranteed to spread among its vertices if the interval I
is large enough, as expressed in Corollary 1 below. To prove this, we need a few basic observations and lemmas. Our first 
observation is a direct consequence of the definition of a strongly connected component.

Observation 1. Let C denote the set of processes of a strongly connected component of some graph G , and C ′ be any proper 
subset of C . Then, there exists a process pi ∈ C ′ s.t. (pi → p j) ∈ G for some p j ∈ C \ C ′ .

Based on influence and strongly connected components, we can show that a certain amount of information propagation 
is guaranteed in any strongly connected component C that is vertex-stable, i.e., whose vertex set remains the same, for 
a given number of rounds. The following Lemma 1 shows that if the number of rounds of the interval of vertex stability 
|[a, b]| matches the size of the component minus 1, then for all pi ∈ C , sa−1

i reaches every process of C in round b at latest.

Lemma 1. Let C ⊆ � with |C | > 1, let a ∈N and let C form a SCC of Gr for all r ∈ [a + 1, a + |C | − 1]. Then, ∀pi, p j ∈ C , it holds that 
sa

i � sa+|C |−1
j .

Proof. For an arbitrary process pi in C , let P y
i ⊆ C be the set of processes p j of C for which sa

i � sy
j holds. Using induction 

on y � a + 1, we show that |P y
i | � min{y − a + 1, |C |}; as y − a + 1 � |C | for y � a + |C | − 1, this proves our lemma.

For the induction start y = a + 1, as C with |C | > 1 is the vertex-set of a strongly connected component in round a + 1, 
Observation 1 implies that pi has at least one neighbor such that sa

i � sa+1
j . By LOCALITY, we also have sa

i � sa+1
i , hence 

|P a+1
i | � 2 = min{2, |C |} as required. For the induction step, assume |P y

i | � min{y − a + 1, |C |}, and consider two cases: (i) 
If |P y

i | < |C |, then the induction hypothesis implies y − a + 1 < |C |, i.e., y + 1 ∈ I . By Observation 1, there is some process 
in P y

i that has at least one neighbor p′
j /∈ P y

i in round y + 1, which, by NEIGHBOURHOOD and TRANSITIVITY, results in 
|P y+1

i | � min{y + 1 − a + 1, |C |} as required. (ii) If already |P y
i | = |C |, then by LOCALITY |P y+1

i | � |P y
i |, so |P y+1

i | = |C | �
min{y + 1 − a + 1, |C |} holds trivially. �
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Fig. 2. Example graph sequence with constant diameter of 3 but dynamic source diameter and dynamic network depth in the order of n.

Corollary 1 follows immediately from Lemma 1 and the fact that, by definition, VSSCs are strongly connected compo-
nents.

Corollary 1. For every I-vertex-stable source component S with |S| > 1 and I = [a, b], it holds that ∀pi, p j ∈ S, ∀x, y ∈ I : y �
x + |S| − 2 ⇒ sx−1

i � sy
j .

In order to also model message adversaries that guarantee faster information propagation, Definition 8 introduces a 
system parameter D , called the dynamic source diameter. Informally, it guarantees that the message sent by a process pi ∈ S , 
where S is a I-VSSC with |I| = D , i.e., I = [a, a + D − 1], in round a can reach, directly or through message forwarding, every 
other process in S by the end of round a + D − 1. Corollary 1 revealed that every sufficiently long I-VSSC S guarantees 
D � |S| − 1; all sufficiently long VSSCs hence necessarily give D � n − 1. Choosing some D < n − 1 can be used to force 
the message adversary to speed-up information propagation accordingly. For example, we show in Section 3.4 that certain 
expander graph topologies ensure D = O (log n).

Analogous considerations apply for the dynamic network depth E in communication graphs Gr with a single source com-
ponent: As all graphs are weakly connected in this case (see Lemma 4), analogous versions of Lemma 1 and Corollary 1 are 
easily established.

Definition 8 (D-bounded I-VSSC). A I-VSSC S is D-bounded with dynamic source diameter D , if ∀pi, p j ∈ S , ∀r, r′ ∈ I: 
r′ � r + D − 1 ⇒ sr−1

i � sr′
j .

Definition 9 (E-influencing I-VSSC). A I-VSSC S is E-influencing with dynamic network depth E , if ∀pi ∈ S , ∀p j ∈ �, ∀r, r′ ∈ I: 
r′ � r + E − 1 ⇒ sr−1

i � sr′
j .

We note that, by definition, for |I| < D and |I| < E , an I-VSSC is trivially D-bounded and E-influencing. While it might be 
tempting to assume a connection between the graph diameter and the dynamic source diameter, resp. the dynamic network 
depth, in general, these notions are independent of each other. To illustrate this, Fig. 2 depicts an example where the graph 
diameter is constant even though, due to p1, the dynamic source diameter and the dynamic network depth are in the order 
of the number of vertices. It is straightforward to generalize this example to n vertices.

To formalize information propagation from source components to the rest of the network in the general case with more 
than a single source component per communication graph Gr , one has to account for the fact that a process p j outside any 
source component could be reachable from multiple source components. Intuitively speaking, this allows modeling dynamic 
networks that do not “cleanly” partition. Similarly to Lemma 1, the following Lemma 2 shows that there is a guaranteed 
information propagation from at least one process of the set of VSSCs to every process in the system, provided all occurring 
source components are I-VSSCs with |I| � n − 1.
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Lemma 2. Let n � 2 and R = {S1, S2...S�} be a set of � � 1 I-VSSCs with I = [a + 1, a + n − 1] such that, for any r ∈ I , every source 
component of Gr is in R. Then, for all p j ∈ �, it holds that ∃S ∈ R such that sa

i � sa+n−1
j for some pi ∈ S.

Proof. Let R ′ = ⋃
S∈R S denote the set of processes of all VSSCs of R . First, we show an analogue of Observation 1 for 

processes outside any source component of R: In every Gr , r ∈ I , at least one process of � \ R ′ has an incoming edge from 
a process contained in some S of R . Suppose that this is not the case. Then, contracting the strongly connected components 
of Gr yields at least one node, contracted entirely from nodes of � \ R ′ , with no incoming edges. Hence, some source 
component of Gr consists entirely of nodes from � \ R ′ and thus cannot be in R . This contradicts the assumptions made 
on R .

Now, let P R(r) be the set of processes p j ∈ � for which there exists some S ∈ R such that sa
i � sr

j holds for some 
pi ∈ S . Using induction on r � a + 1, we show that |P R(r)| � min{r − a + 1, n}; as r − a + 1 � n for r � a + n − 1, this proves 
the lemma.

For the induction start r = a + 1, LOCALITY implies that P R (a + 1) contains all processes in R ′ , in addition to at least 
one process of � \ R ′ , secured by our equivalent of Observation 1. Hence, |P R(a + 1)| � 2 = min{2, n} as required. For the 
induction step, assume |P R(r)| � min{r − a + 1, n}, and consider two cases: (i) If |P R(r)| < n, then the induction hypothesis 
implies r − a + 1 < n, i.e., r + 1 ∈ I . Since R ′ ⊆ P R(a + 1) ⊆ P R(r), there is at least one process p′

j /∈ P R(r) that must be 
contained in � \ R ′; thus, NEIGHBORHOOD and TRANSITIVITY in conjunction with our equivalent of Observation 1 secure 
|P R(r + 1)| � min{r + 1 − a + 1, n}. (ii) If already |P R(r)| = n, then |P R(r + 1)| � |P R(r)| by LOCALITY, so |P R(r + 1)| = n �
min{r + 1 − a + 1, n} holds trivially. �

Again, we introduce a parameter H that allows a more fine-grained modeling of the information propagation in a dy-
namic network than just assuming the worst case n − 1 secured by Lemma 2. For this purpose, Definition 10 generalizes 
Definition 9 from a single I-VSSC to a set R of I-VSSCs. If |I| � H it guarantees that every process in the network receives 
a message from some member of at least one I-VSSC of R within H rounds. Note carefully, though, that this does not 
necessarily imply that there exists an E-influencing I-VSSC. In the special case where R is a singleton set, however, the sole 
member of R is obviously a E-influencing VSSC.

Definition 10 (H-influencing set of I-VSSCs). A set R = {S1, S2...S�} of � � 1 I-VSSCs with I = [a, b] is H-influencing with 
dynamic network depth H if ∀p j ∈ � ∃S ∈ R s.t. ∀r ∈ I: if r � a + H − 1 then sa−1

i � sr
j for some pi ∈ S .

3.4. An example for E-influencing I-VSSCs with E < n − 1: Expander topologies

We conclude this section with an example of a network topology that guarantees that all I-VSSCs are E-influencing for 
some E that is much smaller than n − 1, which justifies why we introduce this parameter (as well as D) explicitly in our 
model.3

An undirected graph G is an α-vertex expander if, for all sets R ⊂ V (G) of size � |V (G)|/2, it holds that |N (R)|
|R| � α, 

where N (R) is the set of neighbors of R in G , i.e., those nodes in V (G) \ R that have a neighbor in R . (Explicit expander 
constructions can be found in [56].) As we need an expander property for directed communication graphs, we consider, for 
a vertex/process set R and a round r, both the set N r+(R) of nodes outside of R that are reachable from R and the set of 
nodes N r−(R) that can reach R in r. Definition 11 ensures an expansion property both for subsets R chosen from source 
components (property (a)) and other processes (properties (b), (c)).

Definition 11 (Directed expander topology). There is a fixed constant α and a fixed set S such that the following conditions 
hold for all sets R ⊆ V (Gr):

(a) If |R| � |S|/2 and R ⊆ S , then |N r+(R)∩S|
|R| � α and |N r−(R)∩S|

|R| � α.

(b) If |R| � n/2 and S ⊆ R , then |N r+(R)|
|R| � α.

(c) If |R| � n/2 and S ∩ R = ∅, then |N r−(R)|
|R| � α.

The following Lemma 3 shows that (1) Definition 11 does not contradict the existence of a single source component and 
that (2) these expander topologies guarantee that I-VSSCs are both D-bounded with D = O (logn) and E-influencing with 
E = O (log n).

Lemma 3. There are sequences of graphs (Gr)r>0 with a single source component in every Gr where Definition 11 holds and where, 
for any such run, every I-VSSC is D-bounded and E-influencing with D = O (log n) and E = O (log n).

3 An expander topology can be maintained in a dynamic network by using the protocol in [55].
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Proof. We will first argue that directed graphs with a single source component exist that satisfy Definition 11. Consider the 
simple undirected graph Ū that is the union of an α-vertex expander on S I with member set S , and an α-vertex expander 
on V (Gr). We turn Ū into a directed graph by replacing every edge (pi, p j) ∈ E(Ū) with oriented directed edges pi → p j
and p j → pi . This guarantees Properties (a)–(c). In order to guarantee the existence of exactly one source component, we 
drop all directed edges pointing to S I from the remaining graph, i.e., we remove all edges pi → p j where pi /∈ S and p j ∈ S , 
which leaves Properties (a)–(c) intact and makes the S from Definition 11 the single source component of the graph. We 
stress that the actual topologies chosen by the adversary might be quite different from this construction, which merely 
serves to show the existence of such graphs.

We also recall that our message adversaries like the one given in Definition 12 will rely on I-vertex-stable source 
components, which only require that the set of vertices remains unchanged, whereas the interconnect topology can change 
arbitrarily. Adding Definition 11 does of course not change this fact.

We will first show that the “per round” expander topology stipulated by Definition 11 is strong enough to guarantee 
that every sufficiently long VSSC is D-bounded with D = O (log n).

Let S be some I-VSSC with I = [a, b] and |I| = �(log n). For i � 1, let Pi ⊆ S be the set of processes p j in S such that 
sa−1

i � sa+i−1
j , and P0 = {pi}. The result D = O (log n) follows immediately from Lemma 1 if |S| ∈ O (logn), so assume that 

|S| ∈ �(log n) and consider some process pi ∈ S . For round a, Property (a) yields |P1| � |P0|(1 + α). In fact, for all i where 
|Pi| � |S|/2, we can apply Property (a) to get |Pi+1| � |Pi |(1 + α), hence |Pi| � min{(1 + α)i, |S|/2}. Let � be the smallest 
value such that (1 + α)� > |S|/2, which guarantees that |P�| > |S|/2. That is, � =

⌈
log(|S|/2)
log(1+α)

⌉
∈ O (logn). Now consider any 

p j ∈ S and define Qi−1 ⊂ S as the set of nodes that causally influence the set Qi in round a + i, for Q2�+1 = {p j}. Again, by 
Property (a), we get |Qi−1| � |Qi |(1 + α), so |Q2k−i | � max{(1 + α)i, |S|/2}. From the definition of � above, we thus have 
|Q�| > |S|/2. Since P� ∩ Q� �= ∅, it follows that every pi ∈ S influences every p j ∈ S within 2� ∈ O (log n) rounds. While 
the above proof has been applied to the starting round x = a only, it is evident that it carries over literally also for any 
x < s − 2�, which shows that S is indeed a D-bounded I-VSSC.

What remains to be shown is that S is also a E-influencing VSSC with E = O (log n). We use Properties (b) and (c) 
similarly as in the above proof: For any round x ∈ [r, s − 2k′], we know by (b) that any process pi ∈ S has influenced at least 
n/2 nodes by round x + k′ where k′ = �log1+α(n/2)� ∈ O (log n) by arguing as for the Pi sets above. Now (c) allows us to 
reason along the same lines as for the sets Qi−1 above. That is, any p j in round x + 2k′ will be influenced by at least n/2
nodes. Therefore, any pi will influence every p j ∈ � by round x + 2k′ , which completes the proof. �

This confirms that sequences of communication graphs with D < n − 1 and E < n − 1 indeed exists and are compatible 
with message adversaries such as VSSC(d) stated in Definition 12 below.

4. Consensus impossibilities and lower bounds

In this section, we will introduce a message adversary VSSCD,E (d) that allows to solve consensus for d � 2D + 2E + 2
in our model, and justify its particular properties by showing that relaxations lead to impossibilities. First and foremost, 
it requires that every Gr is rooted, i.e., contains only a single source component. Moreover, albeit the processes do not 
need to know n, they need a priori knowledge of the dynamic source diameter D and the dynamic network depth E from 
Definitions 8 and 9. And finally, our message adversary must guarantee that, eventually, a d-VSSC occurs. Interestingly, 
whereas VSSCD,E(d) allows to solve consensus for d � 2D + 2E + 2, it is too strong for solving other standard problems in 
dynamic networks such as reliable broadcasting.

Since consensus is trivially impossible for an unrestricted message adversary, which may just inhibit any communication 
in the system, it is natural to consider the question whether weakly connected communication graphs Gr in every round r
allow to solve consensus. However, it is not difficult to see that this does not work, even when all Gr = G are the same, i.e., 
in a static topology: Consider the case where G contains two source components S1 and S2; such a graph obviously exists, 
cf. Lemma 4 below. If all processes in S1 start with initial value 0 and all processes in S2 start with initial value 1, they 
must decide on their own initial value (by validity and termination) and hence violate agreement. After all, no process in, 
say, S1 ever has an incoming link from any process not in S1.

Therefore, we restrict our attention to message adversaries that guarantee a single source component in Gr for any 
round r. Fig. 1 showed a sequence of graphs where this is the case. Some simple properties of such graphs are asserted by 
Lemma 4.

Lemma 4. Any graph G contains at least one and at most n source components (isolated processes), which are all disjoint. If G contains 
a single source component S, then G is weakly connected, and there is a directed (out-going) path from every pi ∈ S to every p j ∈ G .

Proof. We first show that every weakly connected directed simple graph G has at least one source component. To see this, 
contract every SCC to a single vertex and remove all resulting self-loops. The resulting graph G′ is a directed acyclic graph 
(DAG) (and of course still weakly connected), and hence G′ has at least one vertex S (corresponding to some SCC in G) 
that has no incoming edges. By construction, any such vertex S corresponds to a source component in the original graph G . 
Since G has at least 1 and at most n weakly connected components, the first statement of our lemma follows.
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To prove the second statement, we use the observation that there is a directed path from u to v in G if and only if there 
is a directed path from the vertex Cu (containing u) to the vertex C v (containing v) in the contracted graph G′ . If there is 
only one source component in G , the above observations imply that there is exactly one vertex S in the contracted graph 
G′ that has no incoming edges. Since G′ is connected, S has a directed path to every other vertex in G′ , which implies that 
every process pi ∈ S has a directed path to every vertex p j , as required. �

Obviously, assuming a single source component makes consensus solvable if the source component is static (shown 
in detail in [44]). In this paper, we allow the source component to change throughout the run, i.e., the (single) source 
component S of Gr might consist of a different set of processes in every round r. However, it will turn out that a sufficiently 
long interval of vertex-stability is indispensable for solving consensus in this setting. In the sequel, we will consider the 
message adversary VSSCD,E(d) stated in Definition 12, which enforces the dynamic source diameter D and the dynamic 
network depth E � D and is parameterized by some stability window duration d > 0.

Definition 12 (Consensus message adversary VSSCD,E(d)). For d > 0, the message adversary VSSCD,E(d) is the set of all se-
quences of communication graphs (Gr)r>0, where

(i) for every round r, Gr contains exactly one source component,
(ii) all vertex-stable source components occurring in any (Gr)r>0 are D-bounded and E-influencing

(iii) for each (Gr)r>0, there exists some rS T > 0 and an interval of rounds J = [rS T , rS T + d − 1] with a D-bounded and 
E-influencing J -vertex-stable source component.

Note that all the impossibility results and lower bounds in this section hold also when item (ii) is dropped or replaced by 
something weaker (like merely D-bounded VSSCs, as is done in Definition 15). Actually, it is only needed by the consensus 
algorithm in Section 5, and has been added already here solely for the purpose of avoiding two different definitions of 
essentially the same message adversary.

We first establish some general properties of the graph sequences generated by VSSCD,E(d).

Lemma 5 (Properties of VSSCD,E(d)). In every sequence (Gr)r>0 of communication graphs feasible for VSSCD,E(d),

(i) there is at least one process pi such that ∀p j ∈ �: s0
i � sn(n−2)+1

j holds, where s0
i represents pi ’s initial state.

(ii) Conversely, for n > 2, the adversary can choose some sequence (Gr)r>0 where no process pi is causally influenced by all other 
processes p j , i.e., �pi ∈ � s.t. ∃y and ∀p j ∈ � : s0

j � sy
i .

Proof. Definition 12 guarantees that there is (at most) one source component in every Gr , r > 0. Since we have infinitely 
many graphs in (Gr)r>0 but only finitely many processes, there is at least one process pi in the source component of Gr

for infinitely many r. Let r1, r2, . . . be this sequence of rounds. Moreover, let P0 = {pi}, and define for each i > 0 the set 
Pi =Pi−1 ∪ {p j : ∃p′

j ∈Pi−1 : p′
j ∈N ri

j }.
Using induction, we will show that |Pk| � min{n, k +1} for k � 0. Consequently, by the end of round rn−1 at latest, pi will 

have causally influenced all processes in �. Induction base k = 0: |P0| � min{n, 1} = 1 follows immediately from P0 = {pi}. 
Induction step k → k + 1, k � 0: First assume that already |Pk| = n � min{n, k + 1}; since |Pk+1| � |Pk| = n � min{n, k + 1}, 
we are done. Otherwise, consider round rk+1 and |Pk| < n: Since pi is in the source component of Grk+1 , there is a path 
from pi to any process p j , in particular, to any process p j in � \ Pk �= ∅. Let (v → w) be an edge on such a path, such 
that v ∈Pk and w ∈ � \Pk . Clearly, the existence of this edge implies that v ∈ N rk+1

w and thus w ∈ Pk+1. Since this implies 
|Pk+1| � |Pk| + 1 � k + 1 + 1 = k + 2 = min{n, k + 2} by the induction hypothesis, we are done.

Finally, at most n(n −2) +1 rounds are needed until all processes p j have been influenced by pi , i.e., rn−1 � n(n −2) +1: 
A pigeonhole argument reveals that at least one process pi must have been in the source component for n − 1 times after 
so many rounds. After all, if every pi appeared at most n − 2 times, we could fill up at most n(n − 2) rounds. By the above 
result, this is enough to secure that some pi influenced every p j .

The converse statement (ii) follows directly from considering a static star, for example, i.e., a communication graph where 
there is one central process pc , and for all r, Gr = 〈�, 

{
(pc → p j)|p j ∈ � \ {pc}

}〉. Clearly, pc cannot be causally influenced 
by any other process, and for p j, pk �= p j ∈ � \ {pc} and ∀x, y sx

j � sy
k does not hold. On the other hand, this topology 

satisfies Definition 12, which includes the requirement of at most one source component per round. �
In the light of Lemma 5, it is interesting to relate the message adversary in Definition 12 to the classification of [24]: It is 

apparent that VSSCD,E(d) belongs to a class that it is stronger than the weakest class that requests one node that eventually 
reaches all others, but weaker than the second-weakest class that requests one node that is reached by all. By contrast, 
models like [18,40] that assume bidirectionally connected graphs Gr in every round belong to the strongest classes (Class 
10) in [24].
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In Theorem 1, we will examine the solvability of several broadcast problems [40] under the message adversary 
VSSCD,E(d). It will turn out that none of these are implementable under our assumptions—basically, because there is no 
guarantee of (eventual) bidirectional communication. This is clearly in contrast to the usual strong bond between some of 
these problems and consensus in traditional settings.

Theorem 1. The message adversary VSSCD,E(d) given in Definition 12, for any d, belongs to a class that is between the weakest and 
second-weakest in [24]. Neither reliable broadcast, atomic broadcast, nor causal-order broadcast can be implemented. Moreover, 
there is no algorithm that solves counting, k-verification, k-token dissemination, all-to-all token dissemination, and k-committee 
election.

Proof. We first consider reliable broadcast, which requires that when a correct process broadcasts m, every correct pro-
cess eventually delivers m. Suppose that the adversary chooses the communication graphs ∀r : Gr = 〈{pi, p j, p�

}
, 
{
(pi →

p j), (p j → p�)
}〉, which matches Definition 12. Clearly, p j is a correct process in our model. Since pi never receives a 

message from p j , pi can trivially never deliver a message that p j broadcasts.
For the token dissemination problems stated in [40], consider the same communication graphs and assume that there is 

a token that only p� has. Since no other process ever receives a message from p� , token dissemination is impossible.
For counting, k-verification, and k-committee election, we return to the static star round graph Gr = 〈�, 

{
(pc → p j)|p j ∈

� \ {
pc

}}〉 with central node pc considered in the proof of Lemma 5. As the local history of any process is obviously 
independent of n here, it is impossible to solve any of these problems. �
4.1. Necessity of a priori knowledge of the dynamic network depth

We will now show that every correct solution for consensus, as well as for the related leader-election problem, requires 
some a priori knowledge of the dynamic network depth of the communication graphs generated by the adversary. Recall 
that a universal algorithm does not have any priori knowledge of the network, i.e., does not even know upper bounds for 
the dynamic network depth E (and hence for n and D).

Theorem 2 (Impossibility of universal consensus). There is no universal algorithm that can solve consensus under any message adver-
sary VSSCD,E(d) as given in Definition 12, i.e., works correctly under VSSCD,E(d) for any choice of d.

Proof. Assume for the sake of a contradiction that there is such a universal algorithm A, w.l.o.g. for a set of input values 
V that contains 0 and 1. Consider a run αv of A on a communication graph G that forms a (very large) static directed line 
rooted at process pi and ending in process p j . Process pi has initial value v ∈ {0, 1}, while all other processes have initial 
value 0. Clearly, the universal algorithm A must allow pi to decide on v by the end of round κ , where κ is a constant 
(independent of E , D and n; we assume that n is large enough to guarantee n − 1 > κ ). Next, consider a run βv of A that 
has the same initial states as αv , and communication graphs (Gr)r>0 that, during rounds [1, κ], are also the same as in αv

(defining what happens after round κ will be deferred). In any case, since αv and βv are indistinguishable for pi until its 
decision round κ , it must also decide v in βv at the end of round κ .

However, since n > κ + 1, p j has not been causally influenced by pi by the end of round κ . Hence, it has the same 
state sκ+1

i both in βv and in β1−v . As a consequence, it cannot have decided by round κ : If p j decided v , it would violate 
agreement with pi in β1−v . Now assume that runs βv , β1−v are actually such that the stable window occurs later than 
round κ , i.e., rS T = κ + 1, and that the adversary just reverses the direction of the line then: For all Gr , r � κ + 1, p j
is the source component and pi is the last process of the resulting topology. Observe that the resulting βv still satisfies 
Definition 12, since p j itself forms the only source component. Now, p j must eventually decide on some value v ′ in some 
later round κ ′ , but since p j has been in the same state at the end of round κ in both βv and β1−v , it is also in the same 
state in round κ ′ in both runs. Hence, its decision contradicts the decision of pi in β1−v ′ . �

We now use a more involved indistinguishability argument to show that a slightly weaker problem than consensus, 
namely, leader election is also impossible to solve universally under the message adversary VSSCD,E(d). The classic leader 
election problem (cf. [57]) assumes that, eventually, exactly one process irrevocably elects itself as leader (by entering a 
special elected state) and every other process elects itself as non-leader (by entering the non-elected state). Non-leaders 
are not required to know the process id of the leader.

Whereas it is easy to achieve leader election in our model when consensus is solvable, by just reaching consensus on 
the process ids in the system, the opposite is not true: Since the leader elected by some algorithm need not be in the 
source component that exists when consensus terminates, one cannot use the leader to disseminate a common value to all 
processes in order to solve consensus atop of leader election.

Theorem 3 (Impossibility of universal leader election). There is no universal algorithm that can solve leader election under any message 
adversary VSSCD,E(d) as given in Definition 12, i.e., works correctly under VSSCD,E(d) for any choice of d.
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Proof. We assume that there is a universal algorithm A that solves the problem. Consider the execution αi(m) of A in a 
static unidirectional chain of m processes, headed by process pi : Since pi has only a single out-going edge and does not 
know n, it cannot know whether it has neighbors at all. Since it might even be alone in the single-vertex graph consisting 
of pi only, it must elect itself as leader in any αi(m), m � 1, after some Ti rounds (Ti may depend on i, however, as we do 
not restrict A to be time-bounded).

Let i and j be two arbitrary different process ids, and let Ti resp. T j be the termination times in the executions αi(m)

resp. α j(m′), for any m, m′; let T = max{Ti, T j}.
We now build a system consisting of n = 2T + 3 processes. To do so we assume a chain Gi of T + 1 processes headed by 

pi and ending in process pc , a second chain G j of T + 1 processes headed by p j and ending in process pk , and the process 
p� .

Now consider an execution β , which proceeds as follows: For the first T rounds, the communication graph is the unidi-
rectional ring created by connecting the above chains with edges (pk → pi), (pc → p�) and (p� → p j); its source component 
clearly is the entire ring. Starting from round T + 1 on, process p� forms the single vertex source component, which feeds, 
through edges (p� → p j) and (p� → pc) the two chains G j and Ḡi , with Ḡi being Gi with all edges reversed. Note that, 
from round T + 1 on, there is no edge connecting processes in Gi with those in G j or vice versa.

Let pm be the process that is elected leader in β . We distinguish 2 cases:

1. If pm ∈ G j ∪ {p�}, then consider the execution βi that is exactly like β , except that there is no edge (pk → pi) during 
the first T rounds: pi is the single source component here. Clearly, for pi , the execution βi is indistinguishable from 
αi(2T +3) during the first Ti � T rounds, so it must elect itself leader. However, since no process in G j ∪{p�} (including 
pc = pm) is causally influenced by pi during the first T rounds, all processes in G j ∪ {p�} have the same state after 
round T (and all later rounds) in βi as in β . Consequently, pm also elects itself leader in βi as it does in β , which is a 
contradiction.

2. On the other hand, if pm ∈ Gi , we consider the execution β j , which is exactly like β , except that there is no edge 
(p� → p j) during the first T rounds: p j is the single source component here. Clearly, for p j , the execution β j is 
indistinguishable from α j(T + 1) (made up of the chain G j ) during the first T j � T rounds, so it must elect itself leader. 
However, since no process pc in Gi ∪ {p�} (including pc = pm) is causally influenced by p j during the first T rounds, pc

has the same state after round T (and all later rounds) in β j as in β . Consequently, pm also elects itself leader β j as it 
does in β , which is again a contradiction.

This completes the proof of Theorem 3. �
4.2. Impossibility of consensus with too short stability intervals

The goal of this section is to show that some I-VSSC S must be vertex-stable sufficiently long for solving consensus in 
our model. In essence, what is needed for this purpose is that every member of S is able to reach the entire network. 
Recalling Definition 9, this requires |I| � E and hence d � E in Definition 12.

To show that VSSCD,E(E) is indeed necessary in our setting, we will now consider a stronger message adversary 
VSSC’D,E (E − 1) given in Definition 14 below: It is stronger than VSSCD,E(E) as its stability interval is shorter, but still 
slightly weaker than VSSCD,E(E − 1), in that it also guarantees one process to be reached from the processes in S within E
rounds, despite the too short stability interval I . Note carefully that, since there is only one such process, it would be reached 
if |I| was actually E . This property is formally captured by almost E − 1-influencing VSSCs introduced in Definition 13, which 
is slightly weaker than Definition 9 in that I-VSSC’s with |I| = E − 1 are no longer arbitrary.

Definition 13 (Almost E − 1-influencing I-VSSC). An I-VSSC S with I = [a, b] is almost E − 1-influencing, with dynamic 
network depth E > 0, if either |I| < E − 1 or else ∀x ∈ [a, b − E + 2] there exists a unique process p j ∈ � such that 
∀pi ∈ S : sx−1

i � sx+E−1
j , while for all pk ∈ � \ {

p j
}

we have ∀pi ∈ S : sx−1
i � sx+E−2

k .

Definition 14. For d > 0 and n > 2, the message adversary VSSC’D,E(d) is the set of all sequences of communication graphs 
(Gr)r>0, where

(i) for every round r, Gr contains exactly one source component,
(ii) all vertex-stable source components occurring in any (Gr)r>0 are D-bounded and E-influencing,

(iii) for each (Gr)r>0, there exists some rS T > 0 and an interval of rounds J = [rS T , rS T + d − 1] with a D-bounded and 
almost E − 1-influencing J -vertex-stable source component.

Note carefully that Definition 14 allows the message adversary to choose any communication graph sequence that is 
consistent with the conditions stated therein. In particular, VSSC’D,E(E − 1) could also choose a sequence of communication 
graphs that guarantee dynamic network depth E − 1.

We have the following Lemma 6 that relates our message adversaries:
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Lemma 6. It holds that VSSCD,E(E − 1) ⊇ VSSC’D,E(E − 1) and VSSCD,E(E − 1) ⊇ VSSCD,E(E), albeit VSSC’D,E(E − 1) and 
VSSCD,E(E) are incomparable. Thus, in particular, every sequence of communication graphs generated by the message adversary 
VSSC’D,E(E − 1) is also feasible for VSSCD,E(E − 1).

Proof. A comparison of Definition 14 and Definition 12 reveals that they differ only in item (iii). Since almost E −
1-influencing is slightly weaker than VSSCD,E(E − 1), as the adversary only needs to guarantee sx−1

i � sx+E−2
j for ev-

ery pi ∈ S (including the process p j exempted from this requirement in Definition 13) in the latter, VSSCD,E (E − 1) ⊇
VSSC’D,E(E − 1) follows: Note carefully that all our message adversaries assume D-bounded and E-influencing VSSCs. The 
second statement VSSCD,E(E − 1) ⊇ VSSCD,E(E) follows immediately from Definition 12, as the adversary VSSCD,E(E − 1)

may of course also generate a VSSC that is vertex-stable for E rounds. Finally, the incomparability of VSSC’D,E(E − 1) and 
VSSCD,E(E) follows from the fact that (i) VSSC’D,E(E − 1) cannot be forced to generate graph sequences that are vertex-
stable for E rounds, whereas (ii) VSSCD,E(E) cannot be forced to generate VSSCs that are almost E − 1-influencing. �

We will now prove that the message adversary VSSC’D,E(E − 1), and hence, by Lemma 6, also VSSCD,E(E − 1), is too 
strong for solving consensus: Processes can withhold information from each other, which causes consensus to be impossible 
[34]. In order to simplify our proof, we assume that the adversary has to fix the start of J = [rS T , rS T + E − 2] and the set 
of source component members S in the eventually generated J -VSSC S before the beginning of the execution (but given 
the initial values). Note that this does not strengthen the adversary, and hence does not weaken our impossibility result: 
For deterministic algorithms, the whole execution depends only on the initial values and the sequence of the Gr ’s, so the 
adversary could simulate the execution and determine every Gr+1 based on this.

Lemma 7. Consider two runs of a consensus algorithm A under message adversary VSSC’D,E(E − 1), for some a priori fixed J =
[rS T , rS T + E − 2] and a corresponding J -VSSC S, which start from two univalent configurations C ′ and C ′′ that differ only in the state 
of one process pi at the beginning of round r. Then, C ′ and C ′′ cannot differ in valency.

Proof. The proof proceeds by assuming the contrary, i.e., that C ′ and C ′′ have different valency. We will then apply the 
same sequence of round graphs to extend the execution prefixes that led to C ′ and C ′′ to get two different runs e′ and e′′ . It 
suffices to show that there is at least one process p j that cannot distinguish e′ from e′′: This implies that p j will eventually 
decide on the same value in both executions, which contradicts the assumed different valency of C ′ and C ′′ .

Our choice of the round graphs depends on the following exhaustive cases:

(i) For pi /∈ S , we let the adversary choose any source component consisting of the processes in S , for all Gs with s � r. 
Obviously, every process (i.e., we can choose any) p j ∈ S has the same state throughout e′ and e′′ .

(ii) For pi ∈ S and r ∈ J , we choose any source component consisting of the processes in S for all Gs with r � s � rS T +
E − 2. For s > rS T + E − 2, we chose the source component {p j}, where p j is the process that does not hear from any 
process in S (and hence from pi ) within J according to Definition 13. Hence, p j has the same state in e′ and e′′ , both 
during J and afterwards, where it is the single source component.

(iii) For pi ∈ S and r /∈ J , we choose graphs Gs where the source component is {p j} and pi has only in-edges for r � s < rS T ; 
p j (satisfying p j /∈ S and hence p j �= pi ) is again the “distant” process allowed by Definition 13. From s = rS T on, we 
choose the same graphs Gs as in case (ii). It is again obvious that p j has the same state throughout e′ and e′′ , since pi

cannot communicate to any process before J and does not reach p j within J .

In any case, for process p j , the sequence of states in the extensions starting from C ′ and C ′′ is hence the same. Therefore, 
the two runs are indistinguishable for p j , which cannot hence decide differently. This provides the required contradiction 
to the different valencies of C ′ and C ′′ . �

The next Lemma 8 establishes connectedness of the successor graphs of a configuration [34] and is a general property on 
graphs independent from the model used in this section. It is based upon constructing a sequence of graphs that differ only 
in one edge. Note that our construction is complicated by the fact that it must maintain D-boundedness of all intermediate 
graphs. We use dG(v, w) denote the distance (number of edges on a shortest path) from v to w in graph G . Subsequently, 
Lemma 9 shows that in the case where n > 2, we can even find connected successor graphs while avoiding a specific source 
component S .

Lemma 8 (Connectedness). For any two graphs G′ and G′′ , we can find a finite sequence of graphs G′, G1, . . .Gi . . .G′′ , each with a 
single source component, where any two consecutive graphs differ only by at most one edge. We say that the configurations C ′ resp. C ′′
reached by applying G′ resp. G′′ to the same configuration C are connected in this case. Moreover, the following can be asserted:

(i) If the source components of G′ and G′′ consist of the same set of processes S ′ = S ′′ = S, the same is true for all Gi and either 
G′ ⊆ Gi or G′′ ⊆ Gi .
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(ii) If S ′ �= S ′′ and the source component Si of Gi is the same as the source component of G ∈ {G′, G′′}, then either for all v ∈ Si , for all 
w ∈ Gi , dGi (v, w) � dG(v, w) or all but one node of Si have distance 1 to all other nodes, i.e., |{v ∈ Si | ∀w ∈ Gi, dGi (v, w) =
1}| � |Si | − 1.

Proof. We describe how to construct the sequence by stating, for each step of our construction, which edge e is modified 
in Gi in order to arrive at Gi+1. Let G ′ = 〈V , E ′〉 and let G ′′ = 〈V , E ′′〉.

To show (i), we provide a construction that assumes S ′ = S ′′ = S . In the first phase of the construction, add some edge 
e from E ′′ \ E ′ . When no such edge remains we have constructed the graph G j = G′ ∪ G′′ . We then commence the second 
phase by removing some e from E ′ \ E ′′ until no such edge remains. For each Gi in the sequence constructed in this way, 
we have that either G′ ⊆ Gi or G′′ ⊆ Gi , which implies that each graph has a single source component since G′ and G′′ both 
have a single source component themselves. To see that all Gi have the same source component, suppose some Gi has a 
source component different from S . Hence an edge (v, w) was added for v /∈ S , w ∈ S or all edges (v, w) with w ∈ S \ {v}
were removed for some v ∈ S . Both contradict the assumption that S ′ = S ′′ = S , however.

To show (ii), we assume S ′ �= S ′′ and, w.l.o.g., that there is some u ∈ S ′ \ S ′′ (if there is no such node u, we can still use 
the same construction, albeit with reversed direction). First, we add some edge e, chosen arbitrarily one-by-one, until we 
arrive at the complete graph. Since u is always in the source component of each Gi generated this way (there is always a 
spanning tree rooted at u contained in Gi ), each Gi has a single source component and no Gi has source component S ′′ . 
Furthermore, G′ ⊆ Gi and hence (ii) holds. It remains to be shown that from the complete graph we can successively delete 
edges to arrive at G′′ while respecting (ii). For simplicity, we show that, equivalently, we can add edges to G′′ and arrive 
at the complete graph without ever violating (ii). We start by adding to G′′ the edge e = (v → w) for v ∈ S ′′ , w ∈ V until 
no such edge remains. Clearly adding an edge cannot increase any distances and hence (ii) is preserved. We continue by 
removing e = (u → v) for v ∈ V \ {u}. We observe that in the resulting graphs Gi the distance from the source component 
to any other node is 1, hence (ii) holds. Moreover, no new source component could have been generated this way, since u
already has some incoming edges by our construction. We note that in the following final steps only edges are added, hence 
no additional source component can be generated here as well. Fix some v ∈ V \ {u} and add e = (v → w) for any w ∈ V . 
Still, for all nodes of Si \ {v}, the distance to any other node is equal to 1, ascertaining (ii). Eventually, this yields some Gi
where there is an edge (v → w) from every v ∈ V \ {u} to each w ∈ V . Finally, we add e = (u → v) for v ∈ V to arrive at 
the complete graph. Again, the distance from any node in Si \ {u} to any other node is equal to 1 and hence (ii) holds. �
Lemma 9. Pick two arbitrary graphs G′ , G′′ with exactly one source component S ′, S ′′ , respectively. If n > 2 and given some non-empty 
S with S �= S ′ and S �= S ′′ , there is a sequence of graphs G′, . . . , Gi, . . . , G′′ such that any two consecutive graphs of the sequence differ 
in at most one edge and each Gi of the sequence has a unique source component that is different from S.

Proof. We show that, for any graph G′
with source component S

′
, there is such a sequence G′

, . . . , G i, . . . , G
′′

for any graph 
G′′

with source component S
′′

if S
′′

differs from S
′

in at most one node, i.e., |S ′ \ S
′′ ∪ S

′′ \ S
′| � 1. Repeated application of 

this fact implies the lemma, because, for n > 2, it is easy to find a sequence S ′, . . . , Si, . . . S ′′ of subsets of � s.t. each two 
consecutive sets of the sequence differ from each other in at most one node and each set of the sequence is �= S .

We sketch how to construct the desired graphs G i of the sequence in three phases.
Phase 1: Remove all edges (one by one) between nodes of S

′
until only a cycle (or, in general, circuit) remains, and then 

remove all edges between nodes outside of S
′

until only chains going out from S
′

remain. Let G j be the graph resulting
from this operation and S j be its source component.
Phase 2: If we need to add a node p to S j , for some q ∈ S j , first add (q → p). For any q′ �= q, (q′ → p) ∈ G j , where p �= q′ , 
remove (q′ → p). Finally, add (p → q). If we need to remove a node p from S j , for some (q → p), (p → q′) ∈ G j , with 
q, q′ ∈ S j , subsequently add (q → q′) and (q′ → q), then remove (p → q) and (p → q′).

Phase 3: Since we now already have some graph Gk with source component S
′′

, it is easy to add/remove edges one by one 
to arrive at the topology of G′′

. First, we add edges until the nodes of S
′′

are completely connected among each other, the 
nodes not in S

′′
are completely connected among each other, and there is an edge from every node of S

′′
to each node not 

in S
′′

. Second, we remove the edges not present in G ′′
. �

The proof of the following impossibility result follows roughly along the lines of the proof of [34, Lemma 3]. It shows, 
by means of induction on the round number, that a consensus algorithm A cannot reach a univalent configuration after any 
finite number of rounds.

Theorem 4 (Impossibility of consensus under VSSCD,E(E − 1)). There is no algorithm that solves consensus under the message adver-
sary VSSC’D,E(E − 1), and hence none under VSSCD,E(E − 1) for E > 1 and n > 2.

Proof. We follow roughly along the lines of the proof of [34, Lemma 3] and show per induction on the round number, 
that no algorithm A can reach a univalent configuration by round r, for any r > 0. Since no process can have decided in a 
bivalent configuration, this violates the termination property of consensus.
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For the base case, we consider binary consensus only and argue similar to [58] but make use of our stronger validity 
property: Let C0

x be the initial configuration, where the processes with the smallest ids start with 1 and all others with 0. 
Clearly, in C0

0 all processes start with 0 and in C0
n all start with 1, so the two configurations are 0- and 1-valent, respectively. 

To see that for some x C0
x must be bivalent, consider that this is not the case, then there must be a C0

x that is 0-valent 
while C0

x+1 is 1-valent. But, these configurations differ only in pi , and so by Lemma 7 they cannot be univalent with 
different valency.

For the induction step we assume that there is a bivalent configuration C at the beginning of round r − 1, and show 
that there is at least one such configuration at the beginning of round r. We proceed by contradiction and assume all 
configurations at the beginning of round r are univalent. Since C is bivalent and all configurations at the beginning of r are 
univalent, there must be two configurations C ′ and C ′′ at the beginning of round r which have different valency. Clearly, 
C ′ and C ′′ are reached from C by two different round r − 1 graphs G′ = 〈�, E ′〉 and G′′ = 〈�, E ′′〉. As we explain in more 
detail below, we can apply Lemmas 8 and 9 to show that there is a sequence of applicable graphs such that C ′ and C ′′
are connected. Each pair of subsequent graphs in this sequence differs only in one link (v → w), such that the resulting 
configurations differ only in the state of w . Moreover, if the source component in G′ and G′′ is the same, all graphs in the 
sequence also have the same source component. Since the valency of C ′ and C ′′ was assumed to be different, there must be 
two configurations C ′

and C ′′
in the corresponding sequence of configurations that have different valency and differ only in 

the state of one process, say pi . Applying Lemma 7 to C
′

and C
′′

again produces a contradiction, and so not all successors 
of C can be univalent.

It remains to be shown that Lemmas 8 and 9 indeed yield a sequence of applicable graphs, i.e., that extending the 
sequence of the r − 1 graphs so far accordingly yields a prefix of some sequence of VSSC’D,E(E − 1). By the assumptions of 
the theorem we may assume that E > 1 and n > 2, which allows us to apply all the claims of Lemma 9. Since all graphs in 
the sequence described by Lemmas 8 and 9 have exactly one source component, item (i) of Definition 14 is clearly satisfied.

Let Sr−1 denote the source component of Gr−1, let S ′ , S ′′ denote the source component of G′ , G′′ , respectively. If Sr−1 �=
S ′ and Sr−1 �= S ′′ , Lemma 9 allows us to construct a sequence s.t. the source component of no Gi of the sequence is Sr−1. 
Therefore, E-influence of all VSSCs in the sequence is preserved and (ii) of Definition 14 holds in this case. If S ′ = S ′′ , since 
both G′ and G′′ preserved the E-influence, so does every Gi in the sequence described in item (i) of Lemma 8, because every 
Gi contains either G′ or G′′ . If S ′ �= S ′′ and, say S ′ = Sr−1, then each Gi with source component Si = S ′ either preserves 
the distances from S ′ to all other nodes or the distance from all but at most one node p j of S ′ to all other nodes is 1, 
i.e., ∀pk ∈ Si \ {p j}, ∀p� ∈ � : dGi (pk, p�) = 1. In the former case, E-influence is preserved because G′ preserved E-influence. 
In the latter case, p j reached at least one process pk ∈ Si in round r − 1 since it was part of Sr−1 by assumption. As 
∀pk ∈ Si \ {p j}, ∀p� ∈ � : dGi (pk, p�) = 1, in addition to sr−1

k � sr
� , we have that sr−1

j � sr
� . Thus, E-influence is preserved 

for any E > 1 also in this case and item (ii) of Definition 14 is satisfied.
If r ∈ J , i.e., round r is part of the stability phase, it follows that G′ and G′′ have the same source component and so do 

all graphs in the sequence provided by item (i) of Lemma 8. Hence (iii) of Definition 14 also holds.
We have hence established that VSSC’D,E (E − 1) is too strong for consensus, which implies the same for VSSCD,E(E − 1)

according to Lemma 6. �
5. A consensus algorithm for VSSCD,E (2D + 2E + 2)

In this section, we show that it is possible to solve consensus under the message adversary VSSCD,E(2D + 2E + 2).
The underlying idea of our consensus algorithm is to use flooding to propagate the largest input value to everyone. 

However, as Definition 12 does not guarantee bidirectional communication between every pair of processes according to (ii) 
of Lemma 5, flooding is not sufficient: The largest input value could be hidden at a single process pi that never has outgoing 
edges. If such a process pi would never accept smaller values, it is impossible to reach agreement (without potentially 
violating validity). Thus, we have to find a way to force pi to accept also a smaller value.

A well-known technique to do so is locking a candidate value. Obviously, we do not want any process to lock its value, 
but rather some process(es) that will be able to impose their locked value, i.e., can successfully flood the system. In addition, 
we may allow processes that have successfully locked a value to decide only when they are sure that every other process 
has accepted their value as well. According to Definition 10, both can be guaranteed when these processes have been in a 
vertex stable source component long enough which is guaranteed by VSSCD,E(2D + 2E + 2).

The first major ingredient of our consensus algorithm is a network approximation algorithm (described in Section 5.1), 
which allows processes to detect their source component membership in (past) rounds. The core of our consensus algorithm 
(presented in Section 5.2) then exploits this knowledge for reaching agreement on locked values and imposes the resulting 
value on all processes in the network. As we will see, the main complication comes from the fact that a process can detect 
whether it has been part of the source component of round r only with some latency.

5.1. The local network approximation algorithm

According to our system model, no process pi has any initial knowledge of the network. In order to learn about VSSCs, 
for example, it hence needs to locally acquire such knowledge. Process pi achieves this by means of Algorithm 1, which 
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Algorithm 1 Local Network Approximation (Process pi ).
Provides externally callable function InStableSource(I).

Variables and Initialization:
1: Ai := 〈V i , Ei〉 initially ({pi} , ∅) // weighted digraph without multi-edges and loops

Emit round r messages:
2: send 〈Ai〉 to all current neighbors

Round r: computation:
3: for p j ∈ N r

i and p j sent message 〈A j〉 in r do

4: if ∃ edge e = (p j
T→ pi) ∈ Ei then

5: replace e with (p j
T ′→ pi) in Ei where T ′ ← T ∪ {r}

6: else

7: add e := (p j
{r}→ pi) to Ei

8: V i ← V i ∪ V j

9: for every pair of nodes (pk, p�) ∈ V i × V i , pk �= p� do

10: if T ′ = ⋃{
S | ∃p j ∈ N r

i : (pk
S→ p�) ∈ E j

}
�= ∅ then

11: replace (pk
T→ p�) in Ei with (pk

T ∪T ′→ p�); add (pk
T ′→ p�) if no such edge exists

12: function InStableSource(I)

13: Let Ai |t be induced graph of 
{
(pk

T→ p�) ∈ Ei | t ∈ T
}

14: Let Ci |t be Ai |t if it is strongly connected, or the empty graph otherwise.
15: if ∀t1, t2 ∈ I : Ci := V (Ci |t1) = V (Ci |t2) �= ∅ then
16: return Ci

17: else
18: return ∅

maintains a network estimate Ai in a local variable.4 Ai is a graph that holds the local estimates of every communication 
graph Gr that occurred so far, simply by labeling an edge (pi → p j) with the set of round numbers of every Gr once pi
received evidence that (pi → p j) was present in round r.

Initially, Ai consists of process pi only. In every round, every process pi broadcasts its current Ai and fuses it with the 
network estimates received from its neighbors. In more detail, pi updates Ai whenever p j ∈ N r

i , by adding (p j
{r}→ pi) if 

p j is pi ’s neighbor for the first time, or by updating the label of the edge (p j
U→ pi) to (p j

U∪{r}→ pi) (line 5 and line 7). 
Moreover, pi also receives A j from p j and uses this information to update its own knowledge: The loop in line 9 ensures 

that pi has an edge (v T ∪T ′→ w) for each (v T ′→ w) in A j , where T is the set of rounds previously known to pi .
Given Ai , we use Ai |t with5 0 < t � r to denote the current estimate of Gt contained in Ai . Formally, Ai |t is the graph 

induced by the set of edges

Ei |t =
{

e = (pk → p�) | ∃T , t ∈ T : (pk
T→ p�) ∈ Ai

}
.

As the information about p j ’s neighbors in Gt might take many rounds to reach some process pi (if it ever arrives at pi), 
Ai |t may never be fully up-to-date, and as only reported edges are added to the estimate (but not all reports need to reach 
pi ), Ai |t will be an under-approximation of Gt . For example, a process pi that does not have any incoming links from other 
processes, throughout the entire run of the algorithm, cannot learn anything about the remaining network, i.e., Ai will 
permanently be the singleton graph.

Algorithm 1 finally provides an externally callable function InStableSource(I), which will be used by the core con-
sensus algorithm to find out whether the calling process pi was member in an I-VSSC S and to query the set of all members 
of S . We will prove in Lemma 11 below that pi is a member of a I-VSSC if Ai |t is strongly connected and consists of the 
same non-empty set S of processes for all t ∈ I . Informally, this is due to the fact that the members of an I-VSSC will not 
be able to acquire knowledge of the topology outside S within I , as they do not have incoming links from outside.

We start our analysis of Algorithm 1 with Lemma 10, which shows that Ai |t underapproximates Gt in a way that 
consistently includes neighborhoods. Its proof uses the trivial invariant asserting Ai |t = 〈{pi}, ∅〉 at the end of every round 
r < t .

Lemma 10. If Ai |t contains (pk → p�) at the end of some round r, then (i) (pk → p�) ∈ Gt , i.e., Ai |t ⊆ Gt , and (ii) Ai |t also contains 
(pm → p�) for every pm ∈N t

� ⊆ Gt .

4 We denote the value of a variable v of process pi at the end of its round r computation as vr
i ∈ sr

i ; we usually suppress the superscript when it refers 
to the current round.

5 To simplify the presentation, we have refrained from purging outdated information from the network approximation graph. Actually, our consensus 
algorithm only queries InStableSource for intervals that span at most the last 2E + 1 rounds, i.e., any older information could safely be removed from 
the approximation graph, resulting in a message complexity that is polynomial in n.
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Proof. We first consider the case where r < t: At the end of round r, Ai |t is empty, i.e., there are no edges in Ai |t . As the 
precondition of the Lemma’s statement is false, the statement is true.

For the case where r � t , we proceed by induction on r:
Induction base r = t: If Ai |t contains (pk → p�) at the end of round r = t , it follows from A j |t = 〈{p j}, ∅〉 at the end of 

every round r < t , for every p j ∈ �, that p� = pi , since pi is the only processor that can have added this edge to its graph 
approximation. Clearly, it did so only when pk ∈ N t

i , i.e., (pk → p�) ∈ Gt , and included also (pm → p�) for every pm ∈ N t
i

on that occasion. This confirms (i) and (ii).
Induction step r → r + 1, r � t: Assume, as our induction hypothesis, that (i) and (ii) hold for any A j |t at the end of 

round r, in particular, for every p j ∈ N r+1
i . If indeed (pk → p�) in Ai |t at the end of round r + 1, it must be contained in 

the union of round r approximations

U = (Ai|t) ∪
⎛
⎜⎝ ⋃

p j∈N r+1
i

A j|t
⎞
⎟⎠

and hence in some Ak|t with k ∈ {i, j} at the end of round r. Note that the edges (labeled r + 1) added in round r + 1 to Ai

are irrelevant for Ai|t here, since t < r + 1.
Consequently, by the induction hypothesis, (pk → p�) ∈ Gt , thereby confirming (i). As for (ii), the induction hypothesis 

also implies that (pm → p�) is also in this Ak|t . Hence, every such edge must be in U and hence in Ai |t at the end of round 
r + 1 as asserted. �

The following Lemma 11 shows that locally detecting Ai |t to be strongly connected (in line 14 of Algorithm 1) implies 
that pi is in the source component of round t . This result rests on the fact that Ai |t underapproximates Gt (Lemma 10.(i)), 
but does so in a way that never omits an in-edge at any process p j ∈ Ai |t (Lemma 10.(ii)).

Lemma 11. If the graph Ci|t (line 14) with t < r is non-empty in round r, then pi is member of S, the source component of Gt .

Proof. For a contradiction, assume that Ci |t is non-empty (hence Ai |t is an SCC by line 14), but pi /∈ S . Since pi is always 
included in any Ai by construction and Ai |t underapproximates Gt by Lemma 10.(i), this implies that Ai |t cannot be the 
source component of Gt . Rather, Ai |t must contain some process pk that has an in-edge (p j → pk) in Gt that is not present 
in Ai |t . As pk and hence some edge (p j

t→ pk) is contained in Ai |t , because it is an SCC, Lemma 10.(ii) reveals that this is 
impossible. �

From the definition of the function InStableSource(I) in Algorithm 1 and Lemma 11, we get the following Corol-
lary 2.

Corollary 2. If the function InStableSource(I) evaluates to S �= ∅ at process pi in round r, then ∀x ∈ I where x < r, it holds that 
pi is a member of S and S is the source component of Gx.

The following Lemma 12 proves that, in a sufficiently long I = [a, b] with a I-vertex-stable source component S , every 
member pi of S detects an SCC for round a (i.e., Ci |a �= ∅) with a latency of at most D rounds (i.e., at the end of round 
a + D). Informally speaking, together with Lemma 11, it asserts that if there is an I-vertex-stable source component S for a 
sufficiently long interval I , then a process pi observes Ci |a �= ∅ from the end of round a + D on if and only if pi ∈ S .

Lemma 12. Consider an interval of rounds I = [a, b], such that there is a D-bounded I-vertex-stable source component S and assume 
|I| = b − a + 1 > D. Then, from the end of round a + D onwards, we have Ci|a = S, for every process in pi ∈ S.

Proof. Consider any p j ∈ S . At the beginning of round a + 1, p j has an edge (pk
T→ p j) in its approximation graph A j with 

a ∈ T if and only if pk ∈N a
j . Since processes always merge all graph information from other processes into their own graph 

approximation, it follows from the definition of a D-bounded I-vertex-stable source component (Definition 8) in conjunction 
with the fact that a + 1 � b − D + 1 that every pi ∈ S has these in-edges of p j in its graph approximation by the end of 
round a + 1 + D − 1. Since S is a vertex-stable source-component, it is strongly connected without in-edges from processes 
outside S . Hence Ci |a = S from the end of round a + D on, as asserted. �

This immediately gives us the following Corollary 3, which ensures that in a sufficiently long I-VSSC S , with I = [a, b]
and member set S , every pi ∈ S detects its membership in the J -VSSC S , J = [a, b − D] ⊆ I , with a latency of at most D
rounds.
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Algorithm 2 Solving Consensus; code for process pi .
1: Simultaneously run Algorithm 1.

Variables and Initialization:
2: xi ∈N, initially own input value
3: lockedi , decidedi ∈ {false,true} initially false
4: lockRoundi ∈ Z initially 0

Emit round r messages:
5: if decidedi then
6: send 〈decide, xi〉 to all neighbors
7: else
8: send 〈lockRoundi , xi〉 to all neighbors

Round r computation:
9: if not decidedi then
10: if received 〈decide, x j〉 from any neighbor p j then
11: xi ← x j

12: decide on xi and set decidedi ← true

13: else // pi only received 〈lock j, x j〉 messages (if any):
14: (lockRoundi , xi) ← max

{
(lock j, x j) | p j ∈ N r

i ∪ {pi}
}

// lexical order in max
15: if InStableSource([r − D − 1, r − D]) �= ∅ then
16: if (not lockedi ) then
17: lockedi ← true
18: lockRoundi ← r
19: else
20: if InStableSource([lockRoundi , lockRoundi + E]) �= ∅ then
21: decide on xi and set decidedi ← true
22: else // InStableSource([r − D − 1, r − D]) returned ∅
23: lockedi ← false

Corollary 3. Consider an interval of rounds I = [a, b], with |I| = b − a + 1 > D, such that there is a D-bounded vertex-stable source 
component S. Then, from the end of round b on, a call to InStableSource([a, b − D]) returns S at every process in S.

Together, Corollaries 2 and 3 reveal that InStableSource(.) precisely characterizes the caller’s actual membership in 
the [a, b − D]-VSSC S in the communication graphs from the end of round b on.

5.2. Core consensus algorithm for VSSCD,E(2D + 2E + 2)

As explained in Section 5, the core consensus algorithm stated in Algorithm 2 builds upon the network approximation 
algorithm given as Algorithm 1: Relying on Corollary 2, every process uses InStableSource provided by Algorithm 1
to detect whether it has been in the vertex-stable source component of some past round(s). Since Corollary 3 reveals that 
InStableSource has a latency of up to D � E rounds for reliably detecting that a process is in the vertex-stable source 
component of some (interval of) rounds, our algorithm (conservatively) looks back D rounds in the past when locking a 
value.

In more detail, Algorithm 2 proceeds as follows: Initially, no process has locked a value, that is, lockedi = false and 
lockRoundi = 0. Processes try to detect whether they are privileged by evaluating the condition in line 15. When this 
condition is true in some round �, they lock the current value (by setting lockedi = true and lockRound to the current 
round), unless lockedi is already true. Note that our locking mechanism does not actually protect the value against being 
overwritten by a larger value being also locked in �; it locks out only those values that have older locks l < �.

When the process pm that had the largest value in the source component of round � detects that it has been in a 
vertex-stable source component in all rounds � to � + E (line 20), it can decide on its current value. As all other processes 
in that source component must have had pm ’s value imposed on them, they can decide as well. After deciding, a process 
stops participating in the flooding of locked values, but rather (line 6) floods the network with 〈decide, x〉. At the point 
when the stability window guaranteed by Definition 12 with d = 2D + 2E + 2 is large enough to allow every process to 
receive this message, all processes will eventually decide.

Before we turn our attention to the correctness proof of Algorithm 2, we need to define how the network approxima-
tion algorithm and the core consensus algorithm are combined to form a joint algorithm in our computation model. Let 
m_apprr−1

i be the information to be broadcast by the network approximation algorithm and m_cr−1
i the information to be 

broadcast by the consensus algorithm in round r. Process pi actually performs the following steps in round r:

(i) At the beginning of round r, broadcast a message containing m_apprr−1
i and m_cr−1

i , which are both based on sr−1
i .

(ii) Receive all messages based on Gr .
(iii) At the end of round r,
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1. execute the computing step of the network approximation algorithm, using m_apprr−1
j from all messages received in 

(ii).
2. execute the computing step of the consensus algorithm, using m_cr−1

j from all messages received in (ii).

Note carefully that this joint execution scheme implies that when InStableSource() is called in step (iii.2) of the con-
sensus algorithm, the network approximation algorithm is already in the state sr

pi
reached at the end of round r, so Ai

has already been updated with the information received in round r. Consequently, according to Corollaries 2 and 3, a call 
to InStableSource(I) with I = [a, b − D] by pi in the computing step at the end of round b (or a later round) returns 
S �= ∅ precisely when a I-VSSC S containing pi existed.

Our correctness proof starts with the validity property of consensus according to Definition 3.

Lemma 13 (Validity). Every decision value is the input value of some process.

Proof. Processes decide either in line 12 or in line 21. When a process decides via the former case, it has received a 
〈decide, x j〉 message, which is sent by p j if and only if p j has decided on x j in an earlier round. In order to prove validity, 
it is thus sufficient to show that processes can only decide on some process’ input value when they decide in line 21, where 
they decide on their current estimate xi . Let the round of this decision be r. The estimate xi is either pi ’s initial value, or 
was updated in some round r′ � r in line 14 from a value received by way of one of its neighbors’ 〈lockRound, x〉 message. 
In order to send such a message, p j must have had x j = x at the beginning of round r′ , which in turn means that x j was 
either p j ’s initial value, or p j has updated x j after receiving a message in some round r′′ < r. By repeating this argument, 
we will eventually reach a process that sent its initial value, since no process can have updated its decision estimate prior 
to the first round. �

The following Lemma 14 states a number of properties maintained by our algorithm when the first process pi has 
decided. Essentially, they say that there has been a vertex-stable source component in the interval I = [� − D − 1, � + E]
centered around the lock round � (but not earlier), and asserts that all processes in that source component chose the same 
lock round �.

Lemma 14. Suppose that process pi decides in round r, no decisions occurred before r, and � = lockRoundr−1
i , then

(i) pi is in the I-vertex-stable source component S with I = [� − D − 1, � + E],
(ii) � + E � r � � + E + D,

(iii) S �= S ′ , where S ′ is the source component of G�−D−2, and
(iv) all processes in S executed line 18 in round �, and no process in � \ S can have executed line 18 in a round � �.

Proof. Item (i) follows since line 15 has been continuously true since round � and from Lemma 11. As for item (ii), 
� + E � r follows from the requirement of line 20, while r � � + E + D follows from (i) and the fact that by Lemma 12
the requirement of line 20 cannot be, for the first time, fulfilled strictly after round � + E + D . From Lemma 12, it also 
follows that if S = S ′ , then the condition in line 15 would return true already in round � − 1, thus locking would occur 
already in round � − 1. Since pi did not lock in round � − 1, (iii) must hold. Finally, from (i), (iii), and Lemma 12, it follows 
that every other process in S also has InStableSource([� − D − 1, � − D]) = true in round �. Moreover, due to (iii), 
InStableSource([� − 1 − D − 1, � − 1 − D]) = false in round � − 1, which causes all the processes in S (as well as those 
in � \ S) to set locked to 0. Since InStableSource([�′ − D − 1, �′ − D]) cannot become true for any �′ � � at a process 
p j ∈ � \ S , as C j |r = ∅ for any r ∈ I by Corollary 2, (iv) also holds. �

The following Lemma 15 asserts that if a process decides, then it has successfully imposed its proposal value on all other 
processes.

Lemma 15 (Agreement). Suppose that process pi decides in line 21 in round r and that no other process has executed line 21 before r. 
Then, for all p j , it holds that xr−1

j = xr−1
i .

Proof. Using items (i) and (iv) in Lemma 14, we can conclude that pi was in S , the vertex-stable source component of 
rounds � = lockRoundr−1

i to � + E , and that all processes in it S have locked in round �. Therefore, in the interval [�, � + E], 
� is the maximal value of lockRound. More specifically, all processes p j in S have lockRound j = �, whereas all processes pk
in � \ S have lockRoundk < � during these rounds by Lemma 14.(iv). Let pm ∈ S have the largest proposal value x�

m = xmax

among all processes in S . Since pm is in S , there is a causal chain of length at most E from pm to any p j ∈ �. Note carefully 
that guaranteeing this property requires item (ii) of Definition 12, as the first decision (in round r) need not occur in the 
eventually guaranteed 2D + 2E + 2-VSSC but already in some earlier “spurious” VSSC.
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Since no process executed line 21 before round r, no process will send decide messages in [�, � + E]. Thus, all processes 
continue to execute the update rule of line 14, which implies that xmax will propagate along the aforementioned causal path 
to p j . �
Theorem 5 (Consensus under VSSCD,E(2D + 2E + 2)). Let rS T be the beginning of the stability window guaranteed by the message 
adversary VSSCD,E(2D + 2E + 2) given in Definition 12. Then, Algorithm 2 in conjunction with Algorithm 1 solves consensus by the 
end of round rS T + 2D + 2E + 1.

Proof. Validity holds by Lemma 13. Considering Lemma 15, we immediately get agreement: Since the first process pi that 
decides must do so via line 21, there are no other proposal values left in the system.

Observe that, so far, we have not used the liveness part of Definition 12. In fact, Algorithm 2 is always safe in the sense 
that agreement and validity are not violated, even if there is no vertex-stable source component.

We now show the termination property. By Corollary 3, we know that every process in pi ∈ S evaluates the predicate 
InStableSource([rS T , rS T + 1]) = true in round � = rS T + D + 1, thus locking in that round. Furthermore, Definition 12
and Corollary 3 imply that at the latest in round d = � + E + D every process pi ∈ S will evaluate the condition of line 20 to 
true and thus decide using line 21. Thus, every such process pi will send out a message m = 〈decide, xi〉. By Definition 10
and Definition 12, we know that every p j ∈ � will receive a decide message at the latest in round d + E = � + D + 2E =
rS T + 2D + 2E + 1 and decide by the end of this round. �

We conclude our considerations regarding consensus under our eventually stabilizing message adversary VSSCD,E(d) by 
pointing out that the upper bound 2D + 2E + 2 and the lower bound E − 1 of the stability interval d match up to a small 
constant factor. Part of our on-going research is devoted to closing this gap.

6. Impossibilities and lower bounds for k-set agreement

In this section, we will turn our attention from consensus to general k-set agreement and prove related impossibility 
results and lower bounds. We will accomplish this by showing that certain “natural” message adversaries do not allow to 
solve k-set agreement. For example, as excessive partitioning of the system into more than k source components makes 
k-set agreement trivially impossible, one natural assumption is to restrict the maximum number of source components per 
round in our system to k.

Definition 15 below defines the generic message adversary VSSCD,H (k, d), which allows at most k VSSCs per round and 
guarantees a common window of vertex stability of duration at least d. Note that it involves both the dynamic source 
diameter D and the dynamic network depth H according to Definition 8 and Definition 10 (that have to be enforced by the 
message adversary).

Definition 15 (Message adversary VSSCD,H (k, d)). For k > 0, d > 0, the message adversary VSSCD,H (k, d) is the set of all 
sequences of communication graphs (Gr)r>0, where

(i) for every round r, Gr contains at most k source components,
(ii) all vertex-stable source components occurring in any (Gr)r>0 are D-bounded,

(iii) for each (Gr)r>0, there exists some rS T > 0 and an interval of rounds J = [rS T , rS T + d − 1] with a H-influencing set of 
1 � � � k D-bounded J -vertex-stable source components S1, . . . , S� .

Like for Definition 12, item (ii) has only been added for the sake of the k-set agreement algorithm Algorithm 4; the 
impossibility results and lower bounds also hold when (ii) is dropped or replaced by something weaker. Note that the 
message adversary VSSCD,H (k, 1) guarantees at most k VSSCs in every Gr , r > 0.

For k = 1, we can relate VSSCD,H (k, d) and VSSCD,E(d) given in Definition 15. First, VSSCD,H (1, d) differs from VSSCD,E(d)

in that item (iii) rests on H-influencing VSSCs (Definition 10) rather than on E-influencing ones (Definition 8). Therefore, 
every run that is feasible w.r.t. item (iii) of VSSCD,E(d) for E := H is also feasible w.r.t. item (iii) of VSSCD,H (1, d). Second, 
item (ii) of VSSCD,E(d) is also more demanding than item (ii) of VSSCD,H (1, d) as it requires all VSSCs to be both D-bounded 
and E-influencing. Consequently, it follows that VSSCD,H (d) ⊆ VSSCD,H (1, d).

We will now prove that it is impossible to solve k-set agreement for 1 � k < n − 1 under the message adversary 
VSSCD,H (k, min{n − k, H} − 1), even under the slightly weaker version of this message adversary stated in Theorem 7 below. 
We will use the generic impossibility theorem provided in [25, Thm. 1] for this purpose. In a nutshell, the latter exploits 
the fact that k-set agreement is impossible if k sufficiently disconnected components may occur and consensus cannot be 
solved in some component.

We first introduce the required definitions: Two executions of an algorithm α, β are indistinguishable (until decision) for 
a set of processes D, denoted α D∼ β , if for any pi ∈ D it holds that pi executes the same state transitions in α and in β
(until it decides). Now consider a model of a distributed system M = 〈�〉 that consists of the set of processes � and a 
restricted model M′ = 〈D〉 that is computationally compatible to M (i.e., an algorithm designed for a process in M can 
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be executed on a process in M′) and consists of the set of processes D ⊆ �. Let A be an algorithm that works in system 
M = 〈�〉, where MA denotes the set of runs of algorithm A on M, and let D ⊆ � be a nonempty set of processes. Given 
any restricted system M′ = 〈D〉, the restricted algorithm A|D for system M′ is constructed by dropping all messages sent 
to processes outside D in the message sending function of A. We also need the following similarity relation between runs 
in computationally compatible systems (cf. [25, Definition 3]): Let R and R′ be sets of runs, and D be a non-empty set of 
processes. We say that runs R′ are compatible with runs R for processes in D, denoted by R′ �D R, if ∀α ∈R′ ∃β ∈R : α

D∼ β .

Theorem 6 (k-Set agreement impossibility [25, Thm. 1]). Let M = 〈�〉 be a system model and consider the runs MA that are generated 
by some fixed algorithm A in M, where every process starts with a distinct input value. Fix some nonempty and pairwise disjoint sets of 
processes D1, . . . , Dk−1 , and a set of distinct decision values 

{
v1, . . . , vk−1

}
. Moreover, let D = ⋃

1�h<k Dh and D = � \D. Consider 
the following two properties:

(dec-D) For every set Dh, value vh was proposed by some pi ∈D, and there is some p j ∈Dh that decides vh.
(dec-D) If p j ∈D then p j receives no messages from any process in D until every process in D has decided.

Let R
(D)

⊆ MA and R
(D,D)

⊆ MA be the sets of runs of A where (dec-D) respectively both, (dec-D) and (dec-D), hold.6 Suppose 
that the following conditions are satisfied:

(A) R
(D)

is nonempty.
(B) R

(D)
�D R

(D,D)
.

In addition, consider a restricted model M′ = 〈D〉 such that the following properties hold:

(C) There is no algorithm that solves consensus in M′.
(D) M′

A|D
�D MA .

Then, A does not solve k-set agreement in M.

The proof of Theorem 7 below utilizes Theorem 6 in conjunction with the impossibility of consensus under 
VSSCD,E(E − 1) established in Theorem 4.

Theorem 7 (Impossibility of k-set agreement under VSSCD,H (k, min{n − k, H} − 1)). There is no algorithm that solves k-set agreement 
with n > k + 1 processes under the message adversary VSSCD,H (k, min{n − k, H} − 1) stated in Definition 15, for any 1 � k < n − 1, 
even if there are k − 1 source components S1, . . . , Sk−1 that are vertex-stable all the time, i.e., in [1, ∞] (and only source component 
Sk is vertex-stable for at most min{n − k, H} − 1 rounds).

Proof. Suppose that there is a k-set algorithm A that works correctly under the assumptions of our theorem. For k = 1, 
recalling VSSCD,H (d) ⊆ VSSCD,H (1, d), Theorem 7 is implied by Theorem 4 with E := H � n − 1.

To prove our theorem for k > 1, we will show that the conditions of the generic Theorem 6 are satisfied, thereby 
providing a contradiction to the assumption that A exists. Let Di = {pi} for 0 < i � k −1 and let D = ⋃k−1

i=1 Di . Consequently, 
D = 

{
pk, pk+1, . . . , pn

}
and |D| � 2.

(A) The set of runs R
(D)

of A where no process in D receives any message from D before it decides is nonempty: We 
choose the communication graph in every round to be such that D has no incoming links from D until every process in D
has decided. Since any such sequence of communication graphs satisfies the assumptions of our theorem, R

(D)
�= ∅.

(B) The set of runs R
(D,D)

of A where both (i) some process in every Di decides vi and (ii) no process in D receives 
any message from D before it decides satisfies R

(D)
�D R

(D,D)
: Let H be the set of runs where processes pi have unique 

input values xi = i, 0 < i < k, the communication graph in every round is such that p1, . . . , pk−1 are isolated, and pk, . . . , pn

are weakly connected (with a single source component) until every process has decided. By the assumptions of our theorem, 
H is non-empty. Since (i) the processes in D never receive a message from a process in D in both R

(D)
and H, and (ii) 

the initial values of the processes in D are not restricted in H in any way, it is easy to find, for any run ρ ∈ R
(D)

, a run 

ρ ′ ∈H such that ρ D∼ ρ ′ . Because obviously H ⊆R
(D,D)

, we have established R
(D)

�D R
(D,D)

.

(C) Consensus is impossible in M′ =
〈
D

〉
: Let D be the partition containing the kth source component Sk , which is perpet-

ually changing in every round, except for some interval of rounds I = [rS T , rS T + � − 1], where � = min{n − k, H} − 1, for 

6 Note that R(D) is by definition compatible with the runs of the restricted algorithm A|D .
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some fixed rS T . During this interval, let the topology of D be such that there exists some pi ∈ Rk and some p j ∈ D such 
that srST −1

i � srST +�
j but not srST −1

i � srST +�−1
j .

Since |D| = n − k + 1, such a topology (e.g. a chain with head p and tail q) can be created by the message adversary 
VSSCD,H (�), which is even stronger than the corresponding message adversary underlying Theorem 4. Hence, consensus is 
impossible in D.
(D) M′

A|D
�D MA: Fix any run ρ ′ ∈M′

A|D
and consider a run ρ ∈MA , where every process in D has the same sequence 

of state transitions in ρ as in ρ ′ . Such a run ρ exists, since the processes in D can be disconnected from D in every round 

in MA , so ρ D∼ ρ ′ . �
Since Theorem 7 tells us that no k-set agreement algorithm (for 1 � k < n − 1) can terminate with insufficient concurrent 

stability of the at most k source components in the system, it is tempting to assume that k-set agreement becomes solvable 
if a round exists after which all communication graphs remain the same. However, we will prove in Theorem 8 below that 
this is not the case for any 1 < k � n −1. We will again use the generic Theorem 6, this time in conjunction with the variant 
of the well-known impossibility of consensus with lossy links [28,34] provided in Lemma 16, to prove that ensuring at most 
k different decision values is impossible here, as too many decision values may originate from the unstable period.

Lemma 16. Let M′ = 〈pi, p j〉 be a two-processor subsystem of our system M = 〈�〉. If the sequence of communication graphs Gr , 
r > 0, of M are restricted by the existence of a round r′ > 0 such that (i) for r < r′ , (pi → p j) ∈ Gr and/or (p j → pi) ∈ Gr , and no 
other edges incident with pi or p j are in Gr , and (ii) for r � r′ , there are no edges incident with pi and p j at all in Gr , then consensus 
is impossible in M′.

Proof. Up to r′ , this is ensured by the impossibility of 2-processor consensus with a lossy but at least unidirectional link es-
tablished in [34, Lemma 3]. After r′ , this result continues to hold (and is even ensured by the classic lossy link impossibility 
[28]). Hence, consensus is indeed impossible in M′ . �
Theorem 8. There is no algorithm that solves k-set agreement for n � k + 1 processes under the message adversary VSSCD,H (k, ∞), 
for every 1 < k < n.

Proof. Suppose again that there is a k-set algorithm A that works correctly under the assumptions of our theorem. We 
restrict our attention to runs of MA where, until rS T , (i) the same set of k − 1 source components 

{
D1, . . . ,Dk−1

}
with 

D = ⋃k−1
i=1 Di exists in every round, and (ii) two remaining processes D = � \D = {p1, p2} exist, which are (possibly only 

uni-directionally, i.e., via a lossy link) connected in every round, without additional edges to or from D. After rS T , the 
communication graph remains the same, except that the processes in D are disconnected from each other and there is an 
edge from, say, p1 to some process in D in every round. Note that these runs satisfy Definition 15 for d = ∞, as the number 
of source components never exceeds k.

Moreover, we let the adversary choose rS T sufficiently large such that the processes in D have decided. Since the pro-
cesses in Di (i < 0 < k) never receive a message from the remaining system before rS T , in which case they must eventually 
unilaterally decide, we can safely assume this.

We can now again employ the generic impossibility Theorem 6 in this modified setting. The proofs of properties (A), (B) 
and (D) remain essentially the same as in Theorem 7. It hence only remains to prove:

(C) Consensus is impossible in M′ =
〈
D

〉
: This follows immediately from Lemma 16 with r′ = rS T . �

The following Theorem 9 reveals that even (considerably) less than k source components per round before stabilization 
and a single perpetually stable source component after stabilization are not sufficient for solving k-set agreement.

Theorem 9. There is no algorithm that solves k-set agreement for n � k +1 processes under the message adversary VSSCD,H (�k/2� + 1,

∞), for every 1 < k < n, even if Gr = G , r � rS T , where G contains only a single source component.

Proof. We show that, under the assumption that A exists, there is a sequence of communication graphs that is feasible 
for our message adversary that leads to a contradiction. We choose xi = i for all pi ∈ � and let Di = {p1+2i, p2+2i} for 
0 � i < �k/2� − 1. If k is even, let Dk/2−1 = {

pk−1, pk
}

; if k is odd, let D�k/2−1� = {pk}. In any case, let D�k/2� = {pk+1}. 
Finally, let D = {

pk+2, . . . , pn
}

. Note that D may be empty, while all Di are guaranteed to contain at least one process since 
n > k. For all rounds, the processes in D have an incoming edge from a process in one of the Di .

We split the description of the adversarial strategy into �k/2� + 1 phases in each of which we will force some Di
to take |Di | decisions. To keep processes p1+2i, p2+2i ∈ Di with |Di | = 2 from deciding on the same value before their 
respective phase i, the adversary restricts Gr such that (i) there are no links to Di from any other D j and (ii) either the 
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edge (p1+2i → p2+2i) or (p1+2i ← p2+2i) or both are in Gr , in a way that causes Lemma 16 to apply. Note carefully that 
any such Gr indeed has no more than �k/2� + 1 source components.

In the initial phase, D�k/2� is forced to decide: Since pk+1 has no incoming edges from another node in Gr , this situation 
is indistinguishable from a run where pk+1 became the single source component after rS T . Thus, by the correctness of A, 
pk+1 must eventually decide on xk+1 = k + 1. At this point, the initial phase ends, and we can safely allow the adversary to 
modify Gr in such a way that pk+1 has an incoming edge from some other process.

We now proceed with �k/2� − 1 phases: In the ith phase, 0 � i < �k/2� − 1, the adversary drops any link between the 
processes p1+2i, p2+2i ∈ Di (and does not provide an incoming link from any other process, as before) in any Gr . Since, 
for both processes this is again indistinguishable from the situation where they become the single source component after 
rS T , both will eventually decide in some future round (if they have not already decided). Since the adversary may have 
chosen a link failure pattern in earlier phases that causes the impossibility (= forever bivalent run) of Lemma 16 to apply, as 
M′

A|Di
�Di MA , it follows that A and hence A|Di cannot have solved consensus in Di . Since A solves k-set agreement, 

p1+2i and p2+2i must hence decide on two different values. Moreover, since neither p1+2i nor p2+2i ever received a message 
from a process not in Di , their decision values must be different from the ones in all former phases.

Finally, after p1+2i and p2+2i have made their decisions, the adversary may again modify Gr such that they have an 
incoming edge from some other process, thereby reducing the number of source components by two and preserving the 
maximum number �k/2� + 1 of source components, and continue with the next phase.

If k is even, then the final phase �k/2� − 1 forces two more decisions just as described above; otherwise, pk provides 
one additional decision value (which happens concurrently with the initial phase here). In either case, we have shown that 
all pi with 1 � i � k + 1 have decided on different values, which contradicts the assumption that a correct algorithm A
exists. �

Note that Theorem 9 reveals an interesting gap between 2-set agreement and 1-set agreement, i.e., consensus: It shows 
that 2-set agreement is impossible with �k/2� + 1 = 2 source components per round before and a single fixed source 
component after stabilization. By contrast, if we reduce the number of source components per round to a single one before 
stabilization (and still consider a single fixed source component thereafter), even 1-set agreement becomes solvable [35].

7. Algorithms for k-set agreement

In this section, we will provide a message adversary MAJINF(k) (Definition 19) that is sufficiently weak for solving k-set 
agreement if combined with VSSCD,H (n, 3D + H) (Definition 15). Although we can of course not claim that it is a strongest 
one in terms of problem solvability (we did not even define what this means), we have some intuitions that it is not too 
far from the solvability/impossibility border.

7.1. Set agreement

To illustrate some of the ideas that will be used in our message adversary for general k-set agreement, we start with the 
simple case of n − 1-set agreement (also called set agreement) first. Note that Theorem 7 does not apply here. To circumvent 
the impossibility result of Theorem 9, it suffices to strengthen the assumption of at most n − 1 source components in every 
round such that the generation of too many decision values during the unstable period is ruled out. A straightforward way 
to achieve this is to just forbid n different decisions obtained in source components consisting of a single process. Achieving 
this is easy under the �n−1-influence message adversary given in Definition 16, the name of which has been inspired by 
the �n−1 failure detector [59].

Definition 16 (�n−1-influence message adversary). The message adversary �n−1-MAJ is the set of all sequences of communi-
cation graphs (Gr)r>0 that satisfy the following: if each process pi ∈ � becomes a single-node source component during a 
non-empty set of Intervals Xi , then any selection {I1, . . . , In} with Ii ∈ Xi for 1 � i � n, contains two distinct Ii = [a, b] and 
I j = [a′, b′] such that sb

i � sa′
j .

It is easy to devise a set agreement algorithm that works correctly in a dynamic network under Definition 16, provided 
(a bound on) n is known: In Algorithm 3, process pi maintains a proposal value vi , initially xi , and a decision value yi , 
initially ⊥, which are broadcast in every round. If pi receives no message from any other process in a round, it decides 
by setting yi = vi . If pi receives a message from some p j that has already decided (y j �= ⊥), it sets yi = y j . Otherwise, it 
updates vi to the maximum of vi and all received values v j . At the end of round n, a process that has not yet decided sets 
yi := vi , and all processes terminate.

Theorem 10 (Correctness Algorithm 3). Algorithm 3 solves n − 1-set agreement in a dynamic network under message adversary 
�n−1-MAJ given in Definition 16.

Proof. Termination (after n rounds) and also validity are obvious, so it only remains to show n − 1-agreement. Assume, 
w.l.o.g., that the processes p1, p2, . . . are ordered according to their initial values xp1 � xp2 � . . . , and let Rk be the set of 
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Algorithm 3 Set agreement algorithm for message adversary �n−1-MAJ.
Set agreement algorithm, code for process pi :

1: vi := xi ∈ V // initial value
2: yi := ⊥

Emit round r messages:
3: send 〈vi , yi〉 to all

Receive round r messages:
4: receive 〈v j , y j〉 from all current neighbors

Round r: computation:
5: vi := max{vi , v j : p j ∈ Ni}
6: if ∃ j : (y j �= ⊥) ∧ (yi = ⊥) then
7: yi := y j
8: if (Ni = ∅) ∧ (yi = ⊥) then
9: yi := vi
10: if (r = n) ∧ (yi = ⊥) then
11: yi := vi ; terminate

different values (in yi or, if still yi = ⊥, in vi) present in the system at the beginning of round k � 1; R1 is the set of initial 
values. Obviously, R1 ⊇ R2 ⊇ . . . , and since n − 1-agreement is fulfilled if |Rn+1| < n, we only need to consider the case 
where all xi are different.

Consider process p1: If p1 gets a message from some other process p j in round 1, x1 /∈ R2 as (i) p1 does not decide on 
its own value and sets v1 � v j � x j > x1 and (ii) no process that receives a message containing x1 from p1 takes on this 
value. Hence, n − 1-set agreement will be achieved in this case. Otherwise, p1 does not get any message in round 1 and 
hence decides on x1.

Proceeding inductively, assume that p� ∈ P i−1 = {p1, . . . , pi−1} has decided on x� by round k � �, and received only 
messages from processes with smaller index in rounds 1, . . . , k − 1 and no message in round k. Now consider process pi : If 
pi gets a message from some process p j with j > i in some round k � i, with minimal k, before it decides, then xi /∈ Rk+1 as 
(i) pi does not decide on its own value and sets vi � v j � x j > xi , (ii) pi did not send its value to any process in P i−1 before 
their decisions, and (iii) no process with index larger than i that receives a message containing xi from pi takes on this 
value. Hence, n −1-set agreement will be achieved in this case. Otherwise, if pi gets a message from some process p� ∈ P i−1

in round i, it will decide on p� ’s decision value x� and hence also cause xi /∈ Ri+1. In the only remaining case, pi does not 
get any message in round i and hence decides on xi , which completes the inductive construction of P i = {p1, . . . , pi} for 
i < n.

Now consider pn in round n in the above construction of Pn: Definition 16 prohibits the only case where n −1-agreement 
could possibly be violated, namely, when pn also decides on xn: During the first n rounds, we would have obtained n
single-node source components no two of which influence each other in this case. Thus, we cannot extend the inductive 
construction of P i to i = n, as the resulting execution would be infeasible. �
7.2. A message adversary for general k-set agreement

Whereas the set agreement solution introduced in the previous subsection is simple, it is apparent that Definition 16 is 
quite demanding. In particular, it requires explicit knowledge of (a bound on) n. We will now provide a message adversary 
MAJINF(k) (Definition 19), which is sufficient for general k-set agreement if combined with VSSCD,H (k, 3D + H) (Defini-
tion 15) and even with VSSCD,H (n, 3D + H). We obtained this combination by adding some additional properties to the 
necessary network conditions implied by our impossibility Theorems 7 and 9.7

To avoid non-terminating (i.e., forever undecided) executions as predicted by Theorem 7, we require the stable interval
constraint guaranteed by the message adversary VSSCD,H (n, 3D + H) to hold. The parameter D , which can always be safely 
set to D = n − 1 according to Lemma 1, allows to adapt the message adversary to the actual dynamic source diameter 
guaranteed in the VSSCs of a given dynamic network. Note that, since D > 0, rounds where no message is received are not 
forbidden here (in contrast to Definition 16).

In order to also circumvent executions violating the k-agreement property established by Theorem 9, we introduce the 
majority influence constraint guaranteed by the message adversary MAJINF(k) given in Definition 19 below. Like Definition 16
for set agreement, it guarantees some (minimal) information flow between sufficiently long-lasting vertex-stable source 
components that exist at different times. As visualized in Fig. 3, it implies that the information available in any such I-VSSC, 
with |I| > 2D , originates in at most k “initial” J -VSSCs, where | J | > 2D . Thereby, it enhances the very limited information 
propagation that could occur in our model solely under VSSCD,H (k, 3D + H), which is too strong for solving k-agreement.

7 An alternative way to derive sufficient network assumptions for, e.g., n − 2-set agreement could be to generalize Definition 16: One could e.g. assume 
that at least two out of every set of n − 1 different source components consisting of 1 or 2 processes are influenced by a common predecessor source 
component. Whereas this assumption does not require vertex stability of source components, it effectively ensures that information propagates not slower 
as in VSSCs. Owing to this fact, it also prohibits the existence of the node p j in Definition 14, resp. Definition 13, for which each pi in the source component 
fails to influence p j by round x + E − 2, thereby causing the proof of Theorem 7 to fail. Working out the details may turn out difficult, though: After all, 
unlike single-process source components, larger source components suffer from the problem that its members cannot always determine whether the source 
component was a VSSC or not. Influence must hence be conservative, in the sense that it involves even potential 2-process source components.
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Fig. 3. VSSCs influencing each other in a run, for k = 2. Time progresses from left to right; all grey rectangles are stable for more than 2D rounds, white 
rectangles are stable between D + 1 and 2D rounds. Snaked arrows represent majority influence, thin arrows represent (weak) influence. At most two grey 
rectangles may exist that are not majority-influenced by any other grey rectangles.

Formally, given some run ρ , we denote by Vd the set of all pairs (S, I) where S is an I-vertex-stable-source components 
with |I| � d in ρ; note that Vd ⊆V1 for every d � 1.

Definition 17 (Causal influence sets). Let (S, I) ∈ V1 with I = [a, b], (S ′, I ′) ∈ V1 with I ′ = [a′, b′], and let a′ > b. The causal 
influence set of (S, I) and (S ′, I ′) is CS((S, I), (S ′, I ′)) :=

{
p j ∈ S ′ | ∃pi ∈ S : sb

i � sa′
j

}
.

The majority influence between S and S ′ guarantees that S influences a set of nodes in S ′ , which is greater than any set 
influenced by VSSCs not already known by the processes in S (and greater than or equal to any set influenced by VSSCs 
already known by the processes in S). Majority influence is hence a very natural way to discriminate between strong and 
weak influence between VSSCs.

Definition 18 (Majority influence). Let I = [a, b] and I ′ = [a′, b′]. For (S, I) ∈ V2D+1 and (S ′, I ′) ∈ V2D+1, we say that (S, I)
exercises a majority influence on (S ′, I ′), denoted (S, I)↪→m(S ′, I ′) with ↪→m ⊆ V2

2D+1, if and only if for all (S ′′, I ′′) ∈
VD+1 with CS((S ′′, I ′′), (S, I)) = ∅ it holds that |CS((S, I), (S ′, I ′))| > |CS((S ′′, I ′′), (S ′, I ′))| and for all (S ′′, I ′′) ∈ VD+1 with 
CS((S ′′, I ′′), (S, I)) �= ∅ it holds that |CS((S, I), (S ′, I ′))| � |CS((S ′′, I ′′), (S ′, I ′))|.

The relation ↪→m has the following properties:

Lemma 17 (Properties ↪→m). The majority influence relation is antisymmetric, acyclic and intransitive.

Proof. Let S , S ′ , and S ′′ be three different VSSCs stable in the intervals I = [a, b], I ′ = [a′, b′], and I ′′ = [a′′, b′′], respec-
tively. W.l.o.g. assume (S, I)↪→m(S ′, I ′). This implies that b < a′ by the influence definition. Hence a < b′ which implies 
that (S ′, I ′)↪→m(S, I) does not hold. This proves that majority influence is antisymmetric and, by a transitive applica-
tion of this argument, acyclicity. To prove intransitivity, observe that (S, I)↪→m(S ′, I ′) and (S ′, I ′)↪→m(S ′′, I ′′) would imply 
CS((S, I), (S ′′, I ′′)) > CS((S ′, I ′), (S ′′, I ′′)) if (S, I)↪→m(S ′′, I ′′) also held, since no process in S can be influenced by any pro-
cess in S ′ . This contradicts CS((S ′, I ′), (S ′′, I ′′)) � CS((S, I), (S ′′, I ′′)) required by (S ′, I ′)↪→m(S ′′, I ′′), however. �

With these preparations, we are now ready to specify a message adversary MAJINF(k) given in Definition 19.

Definition 19 (k-majority influence message adversary). The message adversary MAJINF(k) is the set of all sequences of com-
munication graphs (Gr)r>0, where in every run there is a set K ⊆ V2D+1 with |K | � k s.t. ∀(S, I) ∈ V2D+1 \ K ∃(S ′, I ′) ∈
V2D+1 with (S ′, I ′)↪→m(S, I).

Informally, Definition 19 ensures that all but at most k “initial” I-VSSCs with |I| � 2D + 1 are majority-influenced by 
some earlier I ′-VSSCs with |I ′| � 2D + 1 (see Fig. 3). Note carefully, though, that Definition 19 neither prohibits more than 
k “initial” I-VSSCs with |I| � 2D nor the partitioning of the system in more than k simultaneous VSSCs.
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We conclude this section with some straightforward stronger assumptions, which also imply Definition 19 and can hence 
be handled by the algorithm introduced in Section 7.3:

(i) Replacing majority influence in Definition 18 by majority intersection |S ∩ S ′| > |S ′′ ∩ S ′|, which is obviously the strongest 
form of influence.

(ii) Requiring |S ∩ S ′| > |S ′|/2, i.e., a majority intersection with respect to the number of processes in S ′ . This could be 
interpreted as a changing VSSC, in the sense of “S ′ is the result of changing a minority of processes in S”. Although this 
restricts the rate of growth of VSSCs in a run, it would apply, for example, in case of random graphs where the giant 
component has formed [60,61].

7.3. Gracefully degrading consensus/k-set agreement

In this section, we provide a k-set agreement algorithm and prove that it works correctly under the message adversary 
VSSCD,H (n,3D + H) + MAJINF(k), i.e., the conjunction of Definitions 15 and 19. Note that the algorithm needs to know 
D , but neither n nor H . It consists of a “generic” k-set agreement algorithm, which relies on the network approximation 
algorithm of Section 5.1 for locally detecting vertex-stable source components and a function GetLock that extracts can-
didate decision values from history information. Our implementation of GetLock uses a vector-clock-like mechanism for 
maintaining “causally consistent” history information, which can be guaranteed to lead to proper candidate values thanks 
to VSSCD,H (n,3D + H) + MAJINF(k).

In sharp contrast to classic k-set agreement algorithms, the algorithm is k-universal, i.e., the parameter k does not appear 
in its code. Rather, the number of system-wide decision values is determined by the number of (certain) 2D + 1-VSSCs oc-
curring in the particular run. As a consequence, if the network partitions into k weakly connected components, for example,8

all processes in a component obtain the same decision value. On the other hand, if the network remains well-connected, 
the algorithm guarantees a unique decision value system-wide.

Properties. Our algorithm is in fact not only k-universal but even worst-case k-optimal, in the sense that (i) it provides 
at most k decisions system-wide in all runs that are feasible for VSSCD,H (n,3D + H) + MAJINF(k), and (ii) that there is at 
least one feasible run under VSSCD,H (n,3D + H) + MAJINF(k) where no correct k-set agreement can guarantee less than k
decisions. (i) will be proved in Section 7.4, and (ii) follows immediately from the fact that a run consisting of k isolated 
partitions is also feasible for VSSCD,H (n,3D + H) + MAJINF(k). Our algorithm can hence indeed be viewed as a consensus 
algorithm that degrades gracefully to k-set agreement, for some k determined by the actual network properties.

Network approximation. Like the consensus algorithm in Section 5, our k-set agreement algorithm consists of two reason-
ably independent parts, the network approximation algorithm Algorithm 1 and the k-set agreement core algorithm given 
in Algorithm 4. As in Section 5.2, we assume that the complete round r computing step of the network approximation 
algorithm is executed just before the round r computing step of the k-set algorithm, and that the round r message of the 
former is piggybacked on the round r message of the latter. Recall that this implies that the round r computing step of the 
k-set core algorithm, which terminates round r, can already access the result of the round r computation of the network 
approximation algorithm, i.e., its state at the end of round r.

Core algorithm. The general idea of our core k-set agreement algorithm in Algorithm 4 is to generate new decision values 
only at members of 2D + 1-VSSCs, and to disseminate those values throughout the remaining network. Using the network 
approximation Ai , our algorithm causes process pi to make a transition from the initially undecided state to a locked state 
when it detects some minimal “stability of its surroundings”, namely, its membership in some D + 1-VSSC D rounds in the 
past (line 17). Note that the latency of D rounds is inevitable here, since information propagation within a D + 1-VSSC may 
take up to D rounds since it is D-bounded, as guaranteed by item (ii) in Definition 15. If process pi , while in the locked 
state, observes some period of stability that is sufficient for locally inferring a consistent view among all VSSC members 
(which occurs when the D + 1-VSSC has actually extended to a 2D + 1-VSSC), pi can safely make a transition to the decided
state (line 24). The decision value is then broadcast in all subsequent rounds, and adopted by any not-yet decided process 
in the system that receives it later on (line 9). Note that VSSCD,H (n, 3D + H) (Definition 15) guarantees that this will 
eventually happen.

Since locking is done optimistically, however, it may also happen that the D + 1-VSSC does not extend to a 2D + 1-VSSC 
(or, even worse, is not recognized to have done so by some members) later on. In this case, pi makes a transition from the 
locked state back to the undecided state (line 22). Unfortunately, this possibility has severe consequences: Mechanisms are 
required that, despite possibly inconsistently perceived unsuccessful locks, ensure both (a) an identical decision value among 
all members of a 2D + 1-VSSC who successfully detect this 2D + 1-VSSC and thus reach the decided state, and (b) no more 
than k different decision values originating from different 2D + 1-VSSCs.

8 It is important to note that the network properties required by our algorithm to reach k decision values need not involve k isolated partitions: Ob-
viously, k isolated partitions in the communication graph also imply k source components, but k source components do not imply a partitioning of the 
communication graph into k weakly connected components — one process may still be connected to several components.
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Algorithm 4 k-universal k-set agreement algorithm, code for process pi .
Variables and Initialization:

1: histi [∗][∗] := ∅ /* histi [ j][r] holds pi ’s estimate of the locks learned by p j in round r */
2: histi [i][0] := {({pi} , xi ,0)} /* virtual first lock (V (S) := {pi} , v := xi , τcreate := 0) at pi */
3: � := ⊥ // most recent lock round, ⊥ if none
4: decisioni := ⊥ // pi ’s decision, ⊥ if undecided

Emit round r messages:
5: send 〈 histi , decisioni〉 to all neighbors

Receive round r messages:
6: for all p j in pi ’s neighborhood N r

i , receive 〈 hist j , decision j〉
Round r computation:

7: if decisioni = ⊥ then
8: if received any message m containing m.decision �= ⊥ then
9: decide m.decision and set decisioni := m.decision
10: else

// update histi with hist j received from neighbors
11: for p j ∈ N r

i , where p j sent hist j do
12: hist′i := histi // remember current history
13: for all non-empty entries hist j [x][r′] of hist j , x �= i do
14: histi [x][r′] := histi [x][r′] ∪ hist j [x][r′]

// locally add all newly learned locks:
15: histi [i] := histi \ hist′i

// perform state transitions (undecided, locked, decided):
16: mySource := InStableSource([r − 2D, r − D])
17: if � = ⊥ and mySource �= ∅ then
18: � := r − 2D
19: lock := GetLock(mySource, �)
20: histi [i][r] := histi [i][r] ∪ lock // create new lock
21: else if � �= ⊥ and mySource = ∅ then
22: � := ⊥ // release unsuccessful lock
23: else if � �= ⊥ and InStableSource([�, � + 2D]) �= ∅ then
24: decide lock.v and set decisioni := lock.v

25: function GetLock(S, r′)
26: Let R be the multiset ⋃p j∈R,r′′�r′ histi [ j][r′′]

Let mfrq(R) be the set of the most frequent elements in R
27: Let mfrqlatest(R) := {x ∈ mfrq(R) | ∀y �= x ∈ mfrq(R) : x.τcreate > y.τcreate}
28: if |mfrqlatest(R)| = 1 then
29: Let v be s.v of the single element s ∈ mfrqlatest(R)

30: newLock := (R, v, r)
31: else
32: newLock := (R, maxs∈R {s.v} , r) // deterministic choice
33: return newLock

Both goals are accomplished by a particular selection of the decision values (using function GetLock), which ulti-
mately relies on an intricate utilization the network properties guaranteed by our message adversary VSSCD,H (n,3D + H)+
MAJINF(k) (Definitions 15 and 19): Our algorithm uses a suitable lock history data structure for this purpose, which is con-
tinuously exchanged and updated among all reachable processes. It is used to store sets of locks L = (S, v, τcreate), which 
are created by every process that enters the locked state: S is the vertex-set of the detected D + 1-VSSC, v is a certain 
proposal value (determined as explained below), and τcreate is the round when the lock is created.

Maintaining history. In more detail, the lock history at process pi consists of an array histi[ j][r] that holds pi ’s (under)ap-
proximation of the locks process p j got to know in round r. It is maintained using the following simple update rules:

(i) Local lock creation: Apart from the single virtual lock ({pi} , xi, 0) created initially by pi in line 2 (which guarantees a 
non-empty lock history right from the beginning), all regular locks created upon pi ’s transition from the undecided to 
the locked state are computed by the function GetLock in line 19. Any lock locally created at pi in round r (that is, 
in the round r computing step of the core k-set agreement algorithm that terminates round r) is of course put into 
histi[i][r].

(ii) Remote lock learning: Since all processes exchange their lock histories, pi may learn about some lock L created by 
process px in round r′ from the lock history hist j[x][r′] received from some p j later on. In this case, L is just added to 
histi[x][r′] (line 14).

(iii) Local lock learning: In order to ensure that the lock histories of all members of a 2D + 1-VSSC are eventually consistent, 
which will ensure identical decision values, every newly learned remote lock L ∈ histi[x][r′] obtained in (ii) is also 
added to histi[i][r].

Note that the update rules (i)+(ii) resemble the ones of vector clocks [62].
Clearly, histi[i][r′] will always be accurate for current and past rounds r′ � r, while histi[ j][r′] may not always be up-to 

date, i.e., may lack some locks that are present in hist j[ j][r′]. Nevertheless, if pi and p j are members of the same I-VSSC 
S with I = [r − 2D, r], Definition 8 ensures that pi and p j have consistent histories histi[ j][r′] and hist j[i][r′] at latest 
by (the end of) round r′ + D , for any r′ ∈ [r − 2D, r − D]. Hence, if pi creates a new lock L when it detects, in its round 
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r computing step, that it was part of a D + 1-VSSC that was stable from r − 2D to r − D , it is ascertained that any other 
member p j will have locally learned the same lock L in the same round r, provided that the D + 1-VSSC in fact extended 
to a 2D + 1-VSSC.

Consistent decisions. The resulting consistency of the histories is finally exploited by the function GetLock(S, �), which 
computes (the value of) a new local lock (line 19) created in round r. As its input parameters, it is provided with the 
members S of the detected D + 1-VSSC and its starting round � = r − 2D . GetLock first determines a multiset R , which 
contains all locks locally known to the members p j ∈ S by round r−2D (line 26). Note that the multiplicity of some lock L =
(S ′, v, r′) in R is just the number of members of S who got to know L by round r − 2D , which is just |CS(S ′, S)| according 
to Definition 17. In order to determine a proper value for the new lock to be computed by GetLock, we exploit the fact 
that MAJINF(k) (given in Definition 19) ensures majority influence according to Definition 18: If the set mfrqlatest(R), 
containing the most frequent locks in R with the same maximal lock creation round, contains a single lock L only, its value 
L.v is used. Note that the restriction to the maximal lock creation date automatically filters unwanted, outdated locks that 
have merely been disseminated in preceding 2D +1-VSSCs, see (1) below. Otherwise, i.e., if mfrqlatest(R) contains multiple 
candidate locks, a consistent deterministic choice, namely, the maximum among all lock values in R , is used (line 32). As a 
consequence, at most k different decision values will be generated system-wide.

Given the various mechanisms employed in our algorithm and their complex interplay, the question about a more 
light-weight alternative solution that omits some of these mechanisms might arise. We will proceed with some informal 
arguments that support the necessity of some of the pillars of our solution, namely, (1) the preference of most recently 
created locks in GetLock, (2) the creation of a new lock at every transition to the locked state, and finally (3) the usage of 
an a priori unbounded data structure histi . Although these arguments are also “embedded” in the correctness proof in the 
following section, they do not immediately leap to the eye and are hence provided explicitly here.

(1) The preference of most recently created lock in GetLock, which is done by selecting the set mfrqlatest(R) in line 28, 
defeats the inevitable “amplification” of the number of processes that got to know some “old” lock: All members of a 
2D + 1-VSSC have finally learned all “old” locks that were only known to some of its members at the starting round of 
the VSSC initially. In terms of multiplicity in R , this would falsely make any such old lock a preferable alternative to the 
most recently created lock.

(2) Instead of creating new locks at every newly detected D +1-VSSC, it might seem sufficient to simply update the creation 
time of an old lock that (dominantly) influences a newly detected VSSC. This is not the case, however: Consider a 
hypothesized algorithm where new locks are only generated if no suitable old locks can be found in the current history, 
and assume a run where two VSSCs with vertex sets S1 = {p1, p2} and S3 = {p1, p2} that are both stable for D + 1
rounds and two source components S2 = {p1, p3} and S4 = {p1, p3} that are stable for 2D + 1 rounds are formed. 
Let these VSSCs be such that Si is formed before S j if i < j and let there be no influence among the processes of 
{p1, p2, p3}, apart from their influence on each other when they are members of the same VSSC. First, let the processes 
of S1 lock on some old lock L′ . Then, assume that the processes of S2 lock on some lock9 L �= L′ , a lock not known in 
S1. Since S3 = {p1, p2}, if S3 is sufficiently well connected, p1 might lock on L′ in S3, because L′ is known to both p1
and p2 while L is known merely to p1 at the start of S3. Subsequently, this results in the situation in S4 where there 
is neither a clear majority (L′ and L are known to both members of S4) nor a clear most recently adopted lock (for p1, 
it seems that L′ is the most recent lock, while for p3, it seems that L is more recent). Consequently, in S4, it is not 
clear whether to lock on L.v or on L′.v . Nevertheless, the processes of S4 should be able to determine that they must 
lock on L and not on L′ , since S2↪→mS4 holds in our example: |CS(S1, S2)| = 1, |CS(S1, S4)| = 2, |CS(S2, S4)| = 2 and 
|CS(S3, S4)| = 1. We can therefore conclude that merely adopting old locks is insufficient.

(3) Since the stabilization round rS T , as implied by Definition 15, may be delayed arbitrarily, an unbounded number of 
2D + 1-VSSCs can occur before rS T . Since any of those might produce a critical lock, in the sense of exercising a 
majority influence upon some later 2D + 1-VSSC, no such lock can safely be deleted from histi of any pi after bounded 
time.

7.4. Correctness proof

In this final subsection, we will prove the following Theorem 11:

Theorem 11. Algorithm 4 solves k-universal k-set agreement in a dynamic network under the message adversary VSSCD,H (n,

3D + H) + MAJINF(k), which is the conjunction of Definition 15 and Definition 19.

The proof consists of a sequence of technical lemmas, which will allow us to establish all the properties of k-set agree-
ment given in Section 3. First, validity according to Definition 4 is straightforward to see, as only the values of locks are ever 
considered as decisions (line 24). Values of locks, on the other hand, are initialized to the initial value of a process (line 2) 

9 This could occur, e.g., because L is known to p3 and has a more recent creation time than L′ .
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and later on always have values of previous locks assigned to them (lines 30 and 32). Note that the claimed k-universality 
is obvious, as the code of the algorithm does not involve k.

To establish termination, we start with Lemmas 18 to 20 that are related to setting locks at all members of vertex stable 
source components.

Lemma 18. Apart from processes adopting a decision sent by another process, only processes part of a vertex stable source component 
with interval length greater than D (resp. 2D) lock (resp. decide).

Proof. The if-statement in line 17 (resp. line 23) is evaluated to true only if InStableSource detects a stable member 
set S in some interval I of length D + 1 (resp. of length 2D + 1) or larger, which implies by Corollary 2 that S is indeed a 
I-VSSC with |I| = D + 1 (resp. |I| = 2D + 1). �
Lemma 19. All processes part of a I-VSSC S with I = [a, b] and |I| > 2D, which did not start already before a, lock, i.e. set � := a, in 
round a + 2D.

Proof. Because S is D-bounded by Definition 15, Corollary 3 guarantees that InStableSource(a, a + D) returns S from 
round a + 2D (of the k-set-algorithm) on, and that it cannot have done so already in round a + 2D − 1. Hence, � = ⊥ in 
round a + 2D , the if-statement in line 17 is entered and � := a is set in line 19. �
Lemma 20. All processes part of a I-VSSC S with I = [a, b] and |I| > 3D, which did not start already before a, have decided by round 
a + 3D.

Proof. It follows from Lemma 19 that all members of the VSSC S set � := a in round a +2D . As the VSSC remains stable also 
in rounds a + 2D, . . . , a + 3D , line 22 will not be executed in these rounds, thus � = a remains unchanged. Consequently, 
due to Corollary 3, the if-statement in line 23 will evaluate to true at the latest in round � + 3D = a + 3D , causing all the 
processes to decide via line 24 by round a + 3D as asserted. �
Lemma 21. The algorithm eventually terminates at all processes.

Proof. Pick any process p j . If p j is part of a source component during the stable interval, guaranteed by Definition 15, 
Lemma 20 ensures termination by rS T + 3D at the latest. Thus, we assume p j is not part of a source component during the 
stable interval. From Definition 10, it follows that there exists a causal chain of length at most H to p j from some member 
pi of a VSSC after its termination. Therefore, it must receive the decide message and decide via line 9 by rS T + 3D + H at 
latest. �

Although we now know that all members of a VSSC that is vertex stable for at least 3D rounds will decide, we did not 
prove anything about their decision values yet. In the sequel, we will prove that they decide on the same value.

Lemma 22. Given some I-VSSC S with I = [a, b] and b � a + D, in all rounds x ∈ [a + D, b] it holds that ∀pi, p j ∈ S :⋃
r′�a histi[ j][r′] = ⋃

r′�a hist j[ j][r′]

Proof. Because S is D-bounded, a message from round a has reached every member of S by round a + D . Moreover, no 
message sent by a process not in S during I can reach a member of S during I because S is a source component. Therefore, 
since histi is sent by each process pi in every round (line 5) and pi adds only newly learned entries to histi (lines 15 
and 20), all these updates of histi during I , regarding any round r′ � a, occur at the latest in round a + D . �
Lemma 23. All processes of a I-VSSC S of V2D+1 with I = [a, b] adopt the same lock (and hence decide the same).

Proof. Such a lock is created by pi ∈ S in round a + 2D , when it recognizes S as having been vertex-stable for D + 1 rounds 
according to Lemma 19. As the lock (value) is computed based on histi present in round a + 2D , which is consistent among 
all VSSC members by Lemma 22, the lemma follows. �

Finally, we show that, given that the system satisfies Definition 19, there will be at most k decision values in any run 
of Algorithm 4, which proves k-agreement: Since there are at most k VSSCs of V2D+1 that are not majority-influenced by 
other VSSCs, it remains to show that any majority-influenced VSSC decides the same as the VSSC it is majority-influenced 
by. In order to do so, we will first establish a key property of our central data structure histi .

Lemma 24. Given I-VSSC S with, I = [a, b], and I ′-VSSC R ′ , I ′ = [a′, b′], where |I| > 2D and |I ′| � 1, let L be a lock known to all 
members of S by b, i.e., for all pi ∈ S it holds that, by the end of round b, L ∈ ⋃

r′�b histi[i][r′]. For any process p j ∈ S ′ , it holds that if 
there exists some pi ∈ S, s.t. sb � sa′

, then L ∈ ⋃
r′�a′ hist j[ j][r′].
i j
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Proof. Assume there exists a pi ∈ S s.t. sb
i � sa′

j but L /∈ ⋃
r′�a′ hist j[ j][r′]. The definition of sb

i � sa′
j implies that there 

exists a causal chain from pi to p j that ends before p j becomes a part of S ′ . Since processes send their own history in 
every round according to line 5, every message in this causal chain consisted of a hist containing L and thus p j put L into 
its hist j[ j][r] via line 14 if 

⋃
r′�r hist j[ j][r′] did not already contain L. �

Lemma 25. Given I-VSSC S ∈ V2D+1 , I = [a, b], and I ′-VSSC S ′ ∈ V2D+1 , I ′ = [a′, b′], assume that the processes of S created the 
(same) lock L when locking. If (S, I)↪→m(S ′, I ′), then the processes in S ′ will choose a lock L′ where L.v = L′.v (and hence decide the 
same as the processes in S).

Proof. From the definition of ↪→m (Definition 18), it follows that no I ′′-VSSC of VD+1 has a larger influence set on S ′ than S . 
By Lemma 18, this implies that no lock that was generated by some I ′′-VSSC in VD+1 can be known to more members of S ′
than the lock L generated by S . Since process pi puts only newly learned locks into histi (lines 15 and 20), by Lemma 24, 
this means that in round a′ no “bad” lock Lb is present in more elements of R = ⋃

pi∈R I ′ ,r′�a′ histi[i][r′] than L. We now 
show that L.τcreate > Lb.τcreate for all Lb occurring in as many elements of R as L with Lb �= L. Obviously, the only locks 
Lb that could occur in as many elements of R as L are locks that have been in histi of some pi ∈ S at the beginning of round 
a already. Since for any such Lb , L was created after Lb , by lines 30 and 32, we have that L.τcreate > Lb.τcreate , as claimed. 
Because in round a′ + 2D , at all processes pi, p j of S ′ , Lemma 22 implies that 

⋃
r′�a′ histi[ j][r′] = ⋃

r′�a′ hist j[i][r′], when 
locking in round a′ +2D according to Lemma 19, every pi of S ′ will find L as the unique most common lock in the elements 
of R with maximal τcreate . This leads to the evaluation of the if-statement in line 28 to true and to the creation of a new 
lock L′ , where L′.v = L.v in line 30, as asserted. �

This completes the proof of Theorem 11.

8. Failure detectors

A convenient way to characterize consensus and k-set solvability in distributed systems where processes are (usually) 
subject to crash failures are failure detectors [63]. Well-known results for message passing systems where a majority of 
processes may crash are the weakest failure detector (�, �) (defined below) for consensus [64], and the necessary failure 
detector �k (� = �1) for k-set agreement [59]. Note that, whereas the weakest failure detector for k-set agreement in 
message passing systems is still unknown, there are failure detectors like Lk [45] that are sufficiently strong for this purpose. 
These results imply that, from any solution that solves consensus resp. k-set agreement, it must be possible to implement 
� and � resp. �k . Conversely, if � and � can be implemented in some system, then there are well-known algorithms for 
solving consensus in this system.

In this section, we follow the example of [23] and explore the relation between our message adversaries and the above 
failure detectors. It is important to note, though, that both VSSCD,E(d) and VSSCD,H (n,d) + MAJINF(k) are inherently in-
compatible with time-free failure detectors, as they involve explicit timing information, namely, the duration of the stability 
window. By contrast, the specifications of �, � and �k are time-free, in the sense that they only involve eventual properties 
for liveness. Therefore, we will consider only the eventually-forever variants VSSCD,E(∞) and VSSCD,H (n,∞) + MAJINF(k)

of our message adversaries in the comparison below.

8.1. Failure detector basics

We recall that a crash failure means that a faulty process may stop to perform any computation step after some point 
during an execution, possibly in a way that causes only a subset of the processes to receive the message of the last broadcast. 
Given the time domain T of some system where processes are prone to crashes, for some given run, the function F : T →
2� that maps each t ∈ T to the processes that are crashed by t is called the failure pattern of the run. Processes in the set 
C = � \ ⋃

t∈T F (t) are called correct.
In the case of a synchronous model with lock-step rounds, T = N. Let AMPn,x denote the asynchronous message passing 

model where up to x out of the overall n = |�| processes may crash; x = n − 1 characterizes the wait-free model. In 
AMPn,x , messages are delivered after a finite but unbounded time and processes do not operate in lock-step, hence T = R.

A failure detector is an oracle that can be queried by any process. Formally, a history H with range R is a function 
H : � ×T →R. A failure detector D with range R maps a non-empty set of histories with range R to each failure pattern.

Two important failure detectors for consensus are � and �.

Definition 20. The eventual leader failure detector � has range �. For each failure pattern F , for every history H ∈ �(F ), 
there is a time t ∈ T and a correct process p j s.t. for every process pi for every t′ � t , H(pi, t′) = p j .

Definition 21. The quorum failure detector � has range 2� . For each failure pattern F , for every H ∈ �(F ), two properties 
hold: (1) for every t, t′ ∈ T and pi, p j ∈ � we have H(pi, t) ∩ H(p j, t′) �= ∅ and (2) there is a time t ∈ T s.t. for every 
process pi , for every t′ � t , H(pi, t′) ⊆ � \ ⋃

t∈T F (t).
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We denote by AMPn,n−1[ f d : D] the AMPn,n−1 model where processes have access to failure detector D. We use 
AMPn,n−1 = AMPn,n−1[ f d : ∅] to denote the absence of any failure detector. The combination (�, �) of � and � is of 
particular importance, because it is the weakest failure detector for consensus [64] in AMPn,n−1, in the following sense: 
First, there is an algorithm that uses (�, �) for solving consensus. Second, let D be a failure detector s.t. consensus is 
solvable under AMPn,n−1[ f d : D]. Then, there is an algorithm A for AMPn,n−1[ f d : D] that, for each failure pattern F , 
produces an output, denoted out(pi, t) for process pi at time t , s.t. setting H(pi, t) := out(pi, t) defines a valid history H of 
(�, �).

In order to relate such failure detector models to our message adversaries, which model dynamic link failures, we use 
the simple observation that the externally visible effect of a process crash can be expressed in our setting: Since correct 
processes in asynchronous message passing systems perform an infinite number of steps, we can assume that they send 
an infinite number of (possibly empty) messages that are eventually received by all correct processes. As in [23], we hence 
assume that the correct (= non-crashing) processes in the simulated AMP are the strongly correct processes. Informally, a 
strongly correct process is able to disseminate its state to all other processes infinitely often.

Hence, we can define correct resp. faulty processes in our directed dynamic network model as follows:

Definition 22. Given an infinite sequence of communication graphs σ , process pi is faulty in a run with σ if there is a 
round r s.t., for some process p j , for all r′ > r: sr

i �� sr′
j .

Let C(σ ) =
{

pi ∈ � | ∀p j ∈ �,∀r ∈ N,∃r′ > r : sr
i � sr′

j

}
denote the strongly correct (= non-faulty) processes in any run 

with σ .

If a given process influences just one strongly correct process infinitely often, it would transitively influence all processes 
in the system, hence would also be strongly correct. Therefore, in order not to be strongly correct, a faulty process must not 
influence any strongly correct process infinitely often. We can hence define failure patterns as follows:

Definition 23 (Failure pattern). The failure pattern associated with communication graph sequence σ is a function Fσ : N →
2� s.t. pi ∈ Fσ (r) if, and only if, for all processes p j ∈ C(σ ), for all r′ > r: sr

i �� sr′
j .

Hence, F (r) ⊆ F (r + 1) and, for any σ of VSSCD,E(∞), C(σ ) �= ∅ as the (infinitely vertex-stable) source component S
must satisfy S = C(σ ) �= ∅.

We denote by SMPn[adv : M A] the synchronous message passing model with n processes where message loss is con-
trolled by the adversary M A. In order to demonstrate how to relate this model to a crash failure model, we introduce the 
message adversary C R A S H(x), which guarantees that at least n − x processes reach every other process infinitely often.

Definition 24. For x < n, we define C R A S H(x) as the set of those communication graph sequences σ where |C(σ )| � n − x.

Using a full-information protocol, we can transform a run of a synchronous model with the message adversary C R A S H(x)
for x < n/2 to a run in asynchronous message passing with crashes:

Corollary 4. For x < n/2, any run with graph sequence σ of SMPn[adv : C R A S H(x)] can be transformed to a run in AMPn,x[ f d :
∅], which is indistinguishable for all simulated processes.

Proof. Every process pi executes a simulator, which invokes the steps of the simulated process as follows: The simulator 
keeps track of all messages sent by the simulated process so far, and adds this history to every simulation message it sends. 
Consequently, any message sent by a strongly correct process in the run under C R A S H(x) is eventually delivered to all 
other processes. To ensure that this is also true for all the messages sent by not strongly correct processes, a process pi
that has sent message (m, i, j) to p j in its last simulated step is allowed to take its next simulated step only if (m, i, j) is 
already known to (the simulator of) at least n − x processes. If this never becomes true, the simulated pi does not execute 
further steps, i.e., is deliberately “crashed” by the simulation. Since x < n/2, there is always at least one strongly correct 
process among the n − x processes that know (m, i, j), which eventually disseminates this message to all processes in the 
system as needed.

Hence, it only remains to prove that the resulting simulation is consistent, i.e., that the simulated (non-atomic) send and 
receive operations are linearizable: Let t j be the time (round) when the simulated process p j is about to make the step 
where (m, i, j) is processed, with t j = ∞ if this is never the case (the simulator at p j never comes to know this message). 
Moreover, let t′

i be the time when the simulated process pi is about to perform the next step after having sent (m, i, j), 
with t′

i = ∞ if it never executes this next step (because it is “crashed”). Now, the send operation of (m, i, j) is linearized to 
tsend = minp j∈�{t j, t′

i} (we assume here that (m, i, .) is actually broadcast in the simulated process pi ’s computing step); if 
tsend = ∞, it is linearized to some arbitrary time tsend = tx after any (unsuccessful) receiver of (m, i, .) (including p j ) that is 
not crashed by the simulation has performed its next step. The reception of (m, i, j) is linearized at the time t j if t j < ∞, 
or else at time tsend .
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Since this linearization ensures the proper send-receive order, every run of this simulation in SMPn[adv : C R A S H(x)]
is indeed indistinguishable for all processes from a run in AMPn,x[ f d : ∅]. �
8.2. Consensus

We are now ready to explore the relation of our consensus message adversary VSSCD,E(∞) to � and �: It will turn out 
that � can be implemented under VSSCD,E(∞), but � cannot.

In fact, � can even be implemented atop of the strictly stronger message adversary VSSC-PARTD,E(∞), under which 
consensus is impossible:

Definition 25. VSSC-PARTD,E(∞) contains those graph sequences where, for some round rS T , there is D-bounded, 
E-influencing I-VSSC with I = [rS T , ∞)

Put differently, VSSC-PARTD,E(∞) allows partitioning of the communication graph into multiple connected components 
for an arbitrary, finite number of rounds until some unique VSSC remains forever. Perhaps not surprisingly, this is insufficient 
to solve consensus:

Lemma 26. Consensus is impossible under the message adversary VSSC-PARTD,E(∞).

Proof. For simplicity, we will restrict our attention to the case n = 2; extending the proof for arbitrary n is straightforward. 
Suppose some algorithm A solves consensus under this adversary. By termination and validity, there is some round τ
where A lets pi decide xi in a run ε starting from some initial configuration C0 with the graph sequence σ = (pi → p j)r>0. 
Similarly, in the run ε′ that also starts from C0 using σ ′ = (pi ← p j)r>0, A will eventually let p j decide x j . Now consider 
the run ε′′ also starting from C0 with sequence σ ′′ = (pi p j)

τ
r=1(pi ← p j)r>τ , where (pi p j)

τ
r=1 means that no message 

is successfully delivered in either direction in the first τ rounds. Clearly, until round τ , pi will have exactly the same view 
in the run ε and in the run ε′ , denoted ε ∼pi ε′′ , thus pi decides xi in the run ε′′ . Similarly, ε′ ∼p j ε′′ until τ , so p j decides 
x j in this run. Because σ , σ ′, σ ′′ ∈ VSSC-PARTD,E(∞), this contradicts the assumption that A solves consensus under this 
message adversary. �

However, the following lemma shows that VSSC-PARTD,E(∞) allows implementing �.

Lemma 27. SMPn[adv : VSSC-PARTD,E(∞)] allows to implement AMPn,n−1[ f d : �].

Proof. Consider an algorithm that outputs, at process pi , the process with the largest identifier in the source component 
that was detected E rounds ago, or itself if no such source component was detected. Clearly, this output is in the range of 
�. Furthermore, since VSSC-PARTD,E(∞) guarantees that eventually some D-bounded, E-influencing source component S
remains the only VSSC forever, S will be eventually detected by every process pi forever, and its member with the largest 
identifier will be written to the output of pi eventually forever as well. By Definition 22, no processes of S is faulty, hence 
the specification of � is satisfied.

To simulate AMP with process crashes, exactly the same simulation as in [23, Sec.4.2] is used: Analogous to the 
simulation used in the proof of Corollary 4, a simulated process is only allowed to take its next step if all the messages sent 
in the previous step are already known by the simulator of the current output of �, which (eventually) will be a strongly 
correct process. �

Finally, since all sequences of VSSCD,E(∞) are contained in VSSC-PARTD,E(∞), it follows that � can indeed also be 
implemented under VSSCD,E(∞).

We will now turn our attention to �: The following theorem shows that � cannot be implemented atop of VSSCD,E(∞).

Lemma 28. SMPn[adv : VSSCD,E(∞)] does not allow to implement AMPn,n−1[ f d : �].

Proof. Again, we will prove our lemma for n = 2 for simplicity, as it is straightforward to generalize the proof for arbitrary 
n. Suppose that, for all rounds r and any processes pi , some algorithm A computes out(pi, r) s.t. for any admissible failure 
pattern F , out ∈ �(F ). Consider the graph sequence σ = (pi → p j)r�1. Clearly, the failure pattern associated with σ is 
Fσ (r) = {p j}. Hence, in the run ε starting from some initial configuration C0 with sequence σ , there is some round r′
s.t. out(pi, r) = {pi} for any r > r′ by Definition 21. Let σ ′ = (pi → p j)

r′
r=1(pi ← p j)r>r′ . By similar arguments as above, in 

the run ε′ that starts from C0 with sequence σ ′ , there is a round r′′ such that out(p j, r) = {p j} for any r > r′′ . Finally, for 
σ ′′ = (pi → p j)

r′
r=1(pi ← p j)

r′′
r=r′+1(pi ↔ p j)r>r′′ , let ε′′ denote the run starting from C0 with graph sequence σ ′′ . Until round 

r′ , ε′′ ∼pi ε, hence, as shown above, out(pi, r′) = {pi} in ε′′ . Similarly, until round r′′ , ε′′ ∼p j ε′ and hence out(p j, r′′) = {p j}
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in ε′′ . Clearly, σ , σ ′, σ ′′ ∈ VSSCD,E(∞) and Fσ ′′ (r) = {}, that is, no process is faulty in σ ′′. However, in ε′′ , out(pi, r′) ∩
out(p j, r′′) = ∅, a contradiction to Definition 21. �

The above result may come as a surprise, since the proof of the necessity of �k for k-set agreement (hence the necessity 
of � = �1 for consensus) developed by Raynal et al. [59] only relies on the availability of a correct k-set agreement algo-
rithm. However, their reduction proof works only in AMPn,n−1, i.e., crash-prone asynchronous message passing systems: 
It relies crucially on the fact that there is no safety violation (i.e., a decision on a value that eventually leads to a violation 
of k-agreement) in any prefix of a run. This is not the case in SMPn , however, as processes may decide after a certain 
number of rounds also if no message is received. Hence, we cannot reuse their proof in our setting.

Taken together, Lemmas 26, 27, and 28 allow us to conclude the following:

(i) Since VSSCD,E(∞) (not to speak of VSSCD,E(d), which is not compatible with failure detector specifications) does not 
allow to implement (�, �), we cannot derive consensus algorithms from (�, �)-based solutions. And indeed, our con-
sensus algorithm (Algorithm 2) is algorithmically very different.

(ii) The message adversaries SOURCE and QUORUM considered in [23], which allow to implement (�, �), are equiv-
alent to VSSCD,E(∞) in terms of consensus solvability, but strictly weaker in terms of sequence inclusion, i.e., 
(SOURCE, QUORUM) ⊂ VSSCD,E(∞).

8.3. k-Set agreement

We start with the definitions of generalized failure detectors for the k-set agreement setting in crash-prone asynchronous 
message passing systems, using the notation introduced in Section 8.1.

Definition 26. The range of the failure detector �k is all k-subsets of 2� . For each failure pattern F , for every history 
H ∈ �k(F ), there ∃LD = {q1, . . . , qk} ∈ 2� and t ∈ T such that LD ∩ C �= ∅ and for all t′ � t, pi ∈ C : H(pi, t′) = LD .

Definition 27. The failure detector �k has range 2� . For each failure pattern F , for every H ∈ �k(F ), two properties must 
hold: (1) for every t, t′ ∈ T and S ∈ � with |S| = k + 1, ∃pi, p j ∈ S : H(pi, t) ∩ H(p j, t′) �= ∅, (2) there is a time t ∈ T s.t. for 
every process pi , for every t′ � t: H(pi, t′) ⊆ C .

k-set agreement in our lock-step round model with link failures allows non-temporary partitioning, which in turn makes 
it impossible to use the definition of crashed and correct processes from the previous section: In a partitioned system, every 
process pi has at least one process p j such that ∀r′ > r : sr

i � sr′
j , but no pi usually reaches all p j ∈ � here. Definition 22

hence implies that there is no correct process in this setting. Hence, we employ the following generalized definition:

Definition 28. Given a infinite graph sequence σ , let a minimal source set S in σ be a set of processes with the property 
that ∀p j ∈ �, ∀r > 0 there exists pi ∈ S, r′ > r such that sr

i � sr′
j . The set of weakly correct processes WC(σ ) of a sequence 

σ is the union of all minimal source sets S in σ .

This definition is a quite natural extension of correct processes in a model, which allows perpetual partitioning of the 
system. In particular, it is not difficult to show that WC(σ ) �= ∅ for σ ∈ VSSCD,H (n, ∞) + M A J I N F (k):

Lemma 29. For every σ ∈ VSSCD,H (n, ∞) + M A J I N F (k), it holds that WC(σ ) �= ∅.

Proof. By Definition 15, for any σ ∈ VSSCD,H (n, ∞), there is some non-empty, H-influencing set of D-bounded VSSCs 
S1, . . . S� from some round onwards in σ . According to Definition 28, 

⋃�
i=1 Si ⊆WC . �

Based on this definition of weakly correct processes, it is possible to generalize some of our consensus-related results 
(obtained for � and �). First, we show that �k cannot be implemented, since VSSCD,H (n, ∞) + M A J I N F (k) allows the 
system to partition into k isolated components.

Lemma 30. �k cannot be implemented under VSSCD,H (n, ∞) + M A J I N F (k).

Proof. For k = 1, we can rely on Lemma 28, as every σ ∈ VSSCD,E(∞) is also admissible in VSSCD,H (n, ∞) + M A J I N F (1). 
Hence, �1 = � cannot be implemented in VSSCD,H (n, ∞) + M A J I N F (1).

The impossibility can be expanded to k > 1 by choosing some σ that (i) perpetually partitions the system into k com-
ponents P̃ = {P1, . . . , Pk} that each have a single source component and consist of the same processes throughout the run, 
and (ii) demands eventually a vertex stable source component in every partition forever. Pick an arbitrary partition P ∈ P̃ . 
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If |P | > 1, such a sequence does not allow to implement � in P (e.g., the message adversary could emulate the graph se-
quence used in Lemma 28 in P ). We hence know that ∃p, p′ ∈ P and ∃r, r′ such that out(p, r) ∩out(p′, r′) = ∅. Furthermore, 
and irrespective of |P |, as for every pi ∈ P , it is indistinguishable whether any p j ∈ P̃ \ P is faulty in σ or not, pi has to 
assume that every process p j ∈ P̃ \ P is faulty. Hence, for every pi ∈ P , we must eventually have out(pi, ri) ⊆ P for some 
sufficiently large ri .

We now construct a set S of k + 1 processes that violates Definition 27: fix some P ∈ P̃ with |P | > 1 and add the 
two processes p, p′ ∈ P , as described above, to S . For every partition P j ∈ P̃ \ P , add one process pi from P j to S . Since 
there exist r, r′ such that out(p, r) ∩ out(p′, r′) = ∅, and ∀P j ∈ P̃ \ P , ∀pi ∈ P j, ∃ri : out(pi, ri) ⊆ Pi and, by the construction 
of S , we have that ∀pi, p j ∈ S , ∃ri, r j such that out(pi, ri) ∩ out(p j, r j) = ∅. This set S clearly violates Definition 27, as 
required. �

As for �k , we note that Lemma 27 reveals also that �1 = � can be implemented under VSSC-PARTD,E(∞). By contrast, 
however, �k it is not implementable under VSSCD,H (n, ∞) + M A J I N F (k) for k > 1:

Lemma 31. For k > 1, �k cannot be implemented under VSSCD,H (n, ∞) + M A J I N F (k).

Proof. We show the claim for k = 2 and n = 3 as it is straight-forward to derive the general case from this. We show that 
supposing some algorithm could implement �k under the adversary leads to a contradiction. The following graph sequences 
(a)–(e) are all admissible sequences under VSSCD,H (k, ∞) (we assume that nodes not depicted are isolated):

(a) (p3 ← p1 → p2)r>0
(b) (p3 ← p2 → p1)r>0
(c) (p2 ← p3 → p1)r>0
(d) (p1 → p2)r>0
(e) (p1 → p3)r>0

Let εa, . . . , εe be the runs resulting from the above sequences applied to the same initial configuration. By Definitions 26
and 28, LD has to include p1 in εa , p2 in εb , and p3 in εc . By Definition 26, in εd , because εa ∼p1 εd and εc ∼p3 εd in 
all rounds, for some t > 0, for all t′ > t , out(p1, t′) = {p1, p3}. A similar argument shows that in εe , for some t > 0, for 
all t′ > t , out(p1, t′) = {p1, p2}, because εa ∼p1 εe and εb ∼p2 εe . The indistinguishability εd ∼p1 εe provides the required 
contradiction, as for some t > 0, for all t′ > t , out(p1, t′) should be the same in εd and εe . �
9. Conclusions

We introduced a framework for modeling dynamic networks with directed communication links under generalized mes-
sage adversaries that focus on vertex-stable source components. We presented a number of impossibility results and lower 
bounds for consensus, as well as an algorithm that solves consensus under the strongest message adversary known so far. 
Moreover, we made a significant step towards determining the solvability/impossibility border of general k-set agreement in 
our model: We provided several impossibility results and lower bounds, which also led us to the first gracefully degrading 
consensus/k-universal k-set agreement under fairly strong message adversaries proposed so far. Our results are comple-
mented by relating our message adversaries to failure detectors. Our results show that the weakest resp. necessary failure 
detectors for consensus resp. k-set agreement cannot be implemented under our message adversaries.

Part of our future work is devoted to finding even stronger message adversaries and matching algorithms, as well as 
even stronger lower bounds, in an attempt to close the remaining gap.
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