Abstract
In this work we propose an automatic way of generating and verifying formal hybrid models of signaling and transcriptional events, gathered in large-scale regulatory networks.This is done by integrating temporal and stochastic aspects of the expression of some biological components. The hybrid approach lies in the fact that measurements take into account both times of lengthening phases and discrete switches between them. The model proposed is based on a real case study of keratinocytes differentiation, in which gene time-series data was generated upon Calcium stimulation.
To achieve this we rely on the Process Hitting (PH) formalism that was designed to consider large-scale system analysis. We first propose an automatic way of detecting and translating biological motifs from the Pathway Interaction Database to the PH formalism. Then, we propose a way of estimating temporal and stochastic parameters from time-series expression data of action on the PH. Simulations emphasize the interest of synchronizing concurrent events.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Ahmad, J., Roux, O., Bernot, G., Comet, J.-P., Richard, A.: Analysing formal models of genetic regulatory networks with delays. Int. J. Bioinform. Res. Appl. (IJBRA) 4(3), 240–262 (2008)
Andreychenko, A., Mikeev, L., Spieler, D., Wolf, V.: Approximate maximum likelihood estimation for stochastic chemical kinetics. EURASIP J. Bioinform. Syst. Biol. 2012(1), 9 (2012)
Batt, G., Page, M., Cantone, I., Goessler, G., Monteiro, P., de Jong, H.: Efficient parameter search for qualitative models of regulatory networks using symbolic model checking. Bioinformatics 26(18), i603–i610 (2010)
Batt, G., Ben Salah, R., Maler, O.: On timed models of gene networks. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 38–52. Springer, Heidelberg (2007)
Busch, H., Camacho-Trullio, D., Rogon, Z., Breuhahn, K., Angel, P., Eils, R., Szabowski, A.: Gene network dynamics controlling keratinocyte migration. Mol. Syst. Biol. 4(1), 199 (2008)
Chaouiya, C., Remy, E., Mossé, B., Thieffry, D.: Qualitative analysis of regulatory graphs: a computational tool based on a discrete formal framework. In: Benvenuti, L., De Santis, A., Farina, L. (eds.) Positive Systems. LNCIS, vol. 294, pp. 119–126. Springer, Heidelberg (2003)
De Jong, H., Geiselmann, J., Hernandez, C., Page, M.: Genetic network analyzer: qualitative simulation of genetic regulatory networks. Bioinformatics 19(3), 336–344 (2003)
Gardner, T.S., Di Bernardo, D., Lorenz, D., Collins, J.J.: Inferring genetic networks and identifying compound mode of action via expression profiling. Science 301(5629), 102–105 (2003)
Guziolowski, C., Kittas, A., Dittmann, F., Grabe, N.: Automatic generation of causal networks linking growth factor stimuli to functional cell state changes. FEBS J. 279(18), 3462–3474 (2012)
Guziolowski, C., Videla, S., Eduati, F., Thiele, S., Cokelaer, T., Siegel, A., Saez-Rodriguez, J.: Exhaustively characterizing feasible logic models of a signaling network using answer set programming. Bioinformatics 29(18), 2320–2326 (2013)
Heiner, Monika, Gilbert, David, Donaldson, Robin: Petri nets for systems and synthetic biology. In: Bernardo, Marco, Degano, Pierpaolo, Zavattaro, Gianluigi (eds.) SFM 2008. LNCS, vol. 5016, pp. 215–264. Springer, Heidelberg (2008)
Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22(3), 437–467 (1969)
Kolly, C., Suter, M.M., Muller, E.J.: Proliferation, cell cycle exit, and onset of terminal differentiation in cultured keratinocytes: pre-programmed pathways in control of C-Myc and Notch1 prevail over extracellular calcium signals. J. Invest. Dermatol. 124(5), 1014–1025 (2005)
MacNamara, A., Terfve, C., Henriques, D., Bernabé, B.P., Saez-Rodriguez, J.: State-time spectrum of signal transduction logic models. Phys. Biol. 9(4), 045003 (2012)
Maurin, M., Magnin, M., Roux, O.: Modeling of genetic regulatory network in stochastic \(\pi \)-calculus. In: Rajasekaran, S. (ed.) BICoB 2009. LNCS, vol. 5462, pp. 282–294. Springer, Heidelberg (2009)
Mitsos, A., Melas, I.N., Siminelakis, P., Chairakaki, A.D., Saez-Rodriguez, J., Alexopoulos, L.G.: Identifying drug effects via pathway alterations using an integer linear programming optimization formulation on phosphoproteomic data. PLoS Comput. Biol. 5(12), e1000591 (2009)
Molloy, M.K.: Performance analysis using stochastic petri nets. IEEE Trans. Comput. 100(9), 913–917 (1982)
Paulevé, L., Magnin, M., Roux, O.: Refining dynamics of gene regulatory networks in a stochastic \(\pi \)-calculus Framework. In: Priami, C., Back, R.-J., Petre, I., de Vink, E. (eds.) Transactions on Computational Systems Biology XIII. LNCS, vol. 6575, pp. 171–191. Springer, Heidelberg (2011)
Pinna, A., Soranzo, N., de la Fuente, A.: From knockouts to networks: Establishing direct cause-effect relationships through graph analysis. PLoS ONE 5(10), e12912 (2010)
Porreca, R., Cinquemani, E., Lygeros, J., Ferrari-Trecate, G.: Identification of genetic network dynamics with unate structure. Bioinformatics 26(9), 1239–1245 (2010)
Priami, C.: Stochastic \(\pi \)-calculus. Comput. J. 38(7), 578–589 (1995)
Altman, R., Reinker, S., Timmer, J.: Parameter estimation in stochastic biochemical reactions. IEE Pro. Syst. Biol. 153, 168–178 (2006)
Schaefer, C.F., Anthony, K., Krupa, S., Buchoff, J., Day, M., Hannay, T., Buetow, K.H.: Pid: the pathway interaction database. Nucleic Acids Res. 37(suppl 1), D674–D679 (2009)
Siebert, H., Bockmayr, A.: Incorporating time delays into the logical analysis of gene regulatory networks. In: Priami, C. (ed.) CMSB 2006. LNCS (LNBI), vol. 4210, pp. 169–183. Springer, Heidelberg (2006)
Snoussi, E.H.: Qualitative dynamics of piecewise-linear differential equations: a discrete mapping approach. Dyn. Stab. Syst. 4(3–4), 565–583 (1989)
Thieffry, D., Thomas, R.: Dynamical behaviour of biological regulatory networks immunity control in bacteriophage lambda. Bull. Math. Biol. 57(2), 277–297 (1995)
Thomas, R.: Boolean formalization of genetic control circuits. J. Theor. Biol. 42(3), 563–585 (1973)
Tu, C.L., Chang, W., Bikle, D.D.: The calcium-sensing receptor-dependent regulation of cell-cell adhesion and keratinocyte differentiation requires Rho and filamin A. J. Invest. Dermatol. 131(5), 1119–1128 (2011)
Van Goethem, S., Jacquet, J.-M., Brim, L., Šafránek, D.: Timed modelling of gene networks with arbitrarily precise expression discretization. Electron. Notes Theoret. Comput. Sci. 293, 67–81 (2013)
Namhee, Y., Seo, J., Rho, K., Jang, Y., Park, J., Kim, W.K., Lee, S.: hipathdb: a human-integrated pathway database with facile visualization. Nucleic Acids Res. 40(D1), D797–D802 (2012)
Acknowledgements
This work was supported by a PhD grant from the CNRS and the French region Pays de la Loire and grants from the German Ministry for Research and Education (BMBF) funding program MedSys (grant number FKZ0315401A) and AGENET (FKZ0315898).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
A Algorithm of Patterns Detection
A Algorithm of Patterns Detection
Here are the algorithms that allow to detect and construct a process hitting model from an RSTC network. These algorithms have a polynomial time running that correspond to the running time of the procedure 2.
Proposition 1
Algorithm 2 has a time complexity of \(\mathcal {O}(|V|\log {}(h))\). Where h is the average height of the patterns in the RSTC network. In the worst case \(h = \log _{V}(|V|)\).



Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Fitime, L.F., Schuster, C., Angel, P., Roux, O., Guziolowski, C. (2015). Integrating Time-Series Data in Large-Scale Discrete Cell-Based Models. In: Abate, A., Šafránek, D. (eds) Hybrid Systems Biology. HSB 2015. Lecture Notes in Computer Science(), vol 9271. Springer, Cham. https://doi.org/10.1007/978-3-319-26916-0_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-26916-0_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-26915-3
Online ISBN: 978-3-319-26916-0
eBook Packages: Computer ScienceComputer Science (R0)