Abstract
In this work, the Interval Type-2 Fuzzy C-Means (IT2FCM) algorithm is used for the design of Interval Type-2 Fuzzy Inference Systems using the centroids and fuzzy membership matrices for the lower and upper bound of the intervals obtained by the IT2FCM algorithm in each data clustering realized by this algorithm, and with these elements obtained by IT2FCM algorithm we design the Mamdani, and Sugeno Fuzzy Inference systems for classification of data sets and time series prediction.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bezdek, J.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum, New York (1981)
Ceylan, R., Özbay, Y., Karlik, B.: “A novel approach for classification of ECG arrhythmias: Type-2 fuzzy clustering neural network. Expert Syst. Appl. 36(3), 6721–6726 (2009)
Chang, X., Li, W., Farrell, J.: A C-means clustering based fuzzy modeling method. In: The Ninth IEEE International Conference on Fuzzy Systems, 2000. FUZZ IEEE 2000, vol. 2, pp. 937–940 (2000)
Choi, B., Rhee, F.: Interval type-2 fuzzy membership function generation methods for pattern recognition. Inf. Sci. 179(13), 2102–2122 (2009)
Gustafson, D.E., Kessel, W.C.: Fuzzy clustering with a fuzzy covariance matrix. In: Proceeding of IEEE Conference on Decision Control, pp. 761–766. San Diego, CA (1979)
Hirota, K., Pedrycz, W.: Fuzzy computing for data mining. Proc. IEEE 87(9), 1575–1600 (1999)
Hwang, C., Rhee, F.: Uncertain fuzzy clustering: interval type-2 fuzzy approach to C-means. IEEE Trans. Fuzzy Syst. 15(1), 107–120 (2007)
Iyer, N.S., Kendel, A., Schneider, M.: Feature-based fuzzy classification for interpretation of mamograms. Fuzzy Sets Syst. 114, 271–280 (2000)
Jang, J.S.R.: ANFIS: Adaptive-network-based fuzzy inference systems. IEEE Trans. on Syst. Man Cybern. 23, 665–685 (1992)
Karnik, N., Mendel, M.: Operations on type-2 set. Fuzzy Set Syst. 122, 327–348 (2001)
Krishnapuram, R., Keller, J.: A possibilistic approach to clustering. IEEE Trans. Fuzzy Syst. 1(2), 98–110 (1993)
Kruse, R., Döring, C., Lesot, M.J.: Fundamentals of fuzzy clustering. In: Advances in Fuzzy Clustering and its Applications; Wiley, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, pp. 3–30 (2007)
Melin, P., Soto, J., Castillo, O., Soria, J.: A new approach for time series prediction using ensembles of ANFIS models. Experts Syst. Appl. El-Sevier 39(3), 3494–3506 (2012)
Mendel, J.: Uncertain Rule-Based Fuzzy Logic Systems: Introduction and new directions, pp. 213–231. Prentice-Hall, Inc., Upper-Saddle River (2001)
Pal, N.R., Pal, K., Keller, J.M., Bezdek, J.C.: A possibilistic fuzzy c-means clustering algorithm. IEEE Trans. Fuzzy Syst. 13(4), 517–530 (2005)
Philips, W.E., Velthuinzen, R.P., Phuphanich, S., Hall, L.O., Clark, L.P., Sibiger, M.L.: Application of fuzzy c-means segmentation technique for tissue differentation in MR images of hemorrhagic gliobastoma multifrome. Magn. Reson. Imaging 13(2), 277–290 (1995)
Pulido, M., Mancilla, A., Melin, P.: Ensemble neural networks with fuzzy logic integration for complex time series prediction. IJIEI 1(1), 89–103 (2010)
Pulido, M., Mancilla, A., Melin, P.: An ensemble neural network architecture with fuzzy response integration for complex time series prediction. In: Evolutionary Design of Intelligent Systems in Modeling, Simulation and Control, pp. 85–110 (2009)
Pulido, M., Mancilla, A., Melin, P.: Ensemble neural networks with fuzzy integration for complex time series prediction. In: Bio-inspired Hybrid Intelligent Systems for Image Analysis and Pattern Recognition, pp. 143–155 (2009)
Rubio, E.; Castillo, O.: Interval type-2 fuzzy clustering for membership function generation. In: 2013 IEEE Workshop on Hybrid Intelligent Models and Applications (HIMA), pp. 13–18, 16–19 April 2013
Rubio, E.; Castillo, O.: Optimization of the interval type-2 fuzzy C-means using particle swarm optimization. In: Proceedings of NABIC 2013, pp. 10–15. Fargo, USA (2013)
Soto J., Castillo O., Soria J.: A New approach for time series prediction using ensembles of ANFIS models. In: Soft Computing for Intelligent Control and Mobile Robotics, Springer, vol. 318, pp. 483 (2015)
Soto J., Melin P., Castillo O.: Time series prediction using ensembles of neuro-fuzzy models with interval type-2 and type-1 fuzzy integrators. In: Proceedings of International Joint Conference on Neural Nerworks, Dallas, pp. 189–194 Texas, USA, 4–9 Aug 2013
Wang C., Zhang J.P.: Time series prediction based on ensemble ANFIS. In: Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, Guangzhou, 18–21 Aug 2005
Yang, M.-S., Hu, Y.-J., Lin, K.C.-R., Lin, C.C.-L.: Segmentation techniques for tissue differentiation in MRI of ophthalmology using fuzzy clustering algorithms. Magn. Reson. Imaging 20, 173–179 (2002)
Yen, J., Langari, R.: Fuzzy Logic: Intelligence, Control, and Information. Prentice Hall, Upper Saddle River (1999)
Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning-I. Inform. Sci. 8(3), 199–249 (1975)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Rubio, E., Castillo, O., Melin, P. (2016). Interval Type-2 Fuzzy System Design Based on the Interval Type-2 Fuzzy C-Means Algorithm. In: Collan, M., Fedrizzi, M., Kacprzyk, J. (eds) Fuzzy Technology. Studies in Fuzziness and Soft Computing, vol 335. Springer, Cham. https://doi.org/10.1007/978-3-319-26986-3_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-26986-3_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-26984-9
Online ISBN: 978-3-319-26986-3
eBook Packages: EngineeringEngineering (R0)