Skip to main content

Interval Type-2 Fuzzy System Design Based on the Interval Type-2 Fuzzy C-Means Algorithm

  • Chapter
  • First Online:
Fuzzy Technology

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 335))

Abstract

In this work, the Interval Type-2 Fuzzy C-Means (IT2FCM) algorithm is used for the design of Interval Type-2 Fuzzy Inference Systems using the centroids and fuzzy membership matrices for the lower and upper bound of the intervals obtained by the IT2FCM algorithm in each data clustering realized by this algorithm, and with these elements obtained by IT2FCM algorithm we design the Mamdani, and Sugeno Fuzzy Inference systems for classification of data sets and time series prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bezdek, J.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum, New York (1981)

    Google Scholar 

  2. Ceylan, R., Özbay, Y., Karlik, B.: “A novel approach for classification of ECG arrhythmias: Type-2 fuzzy clustering neural network. Expert Syst. Appl. 36(3), 6721–6726 (2009)

    Article  Google Scholar 

  3. Chang, X., Li, W., Farrell, J.: A C-means clustering based fuzzy modeling method. In: The Ninth IEEE International Conference on Fuzzy Systems, 2000. FUZZ IEEE 2000, vol. 2, pp. 937–940 (2000)

    Google Scholar 

  4. Choi, B., Rhee, F.: Interval type-2 fuzzy membership function generation methods for pattern recognition. Inf. Sci. 179(13), 2102–2122 (2009)

    Article  MATH  Google Scholar 

  5. Gustafson, D.E., Kessel, W.C.: Fuzzy clustering with a fuzzy covariance matrix. In: Proceeding of IEEE Conference on Decision Control, pp. 761–766. San Diego, CA (1979)

    Google Scholar 

  6. Hirota, K., Pedrycz, W.: Fuzzy computing for data mining. Proc. IEEE 87(9), 1575–1600 (1999)

    Article  Google Scholar 

  7. Hwang, C., Rhee, F.: Uncertain fuzzy clustering: interval type-2 fuzzy approach to C-means. IEEE Trans. Fuzzy Syst. 15(1), 107–120 (2007)

    Article  Google Scholar 

  8. Iyer, N.S., Kendel, A., Schneider, M.: Feature-based fuzzy classification for interpretation of mamograms. Fuzzy Sets Syst. 114, 271–280 (2000)

    Article  Google Scholar 

  9. Jang, J.S.R.: ANFIS: Adaptive-network-based fuzzy inference systems. IEEE Trans. on Syst. Man Cybern. 23, 665–685 (1992)

    Google Scholar 

  10. Karnik, N., Mendel, M.: Operations on type-2 set. Fuzzy Set Syst. 122, 327–348 (2001)

    Google Scholar 

  11. Krishnapuram, R., Keller, J.: A possibilistic approach to clustering. IEEE Trans. Fuzzy Syst. 1(2), 98–110 (1993)

    Article  Google Scholar 

  12. Kruse, R., Döring, C., Lesot, M.J.: Fundamentals of fuzzy clustering. In: Advances in Fuzzy Clustering and its Applications; Wiley, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, pp. 3–30 (2007)

    Google Scholar 

  13. Melin, P., Soto, J., Castillo, O., Soria, J.: A new approach for time series prediction using ensembles of ANFIS models. Experts Syst. Appl. El-Sevier 39(3), 3494–3506 (2012)

    Article  Google Scholar 

  14. Mendel, J.: Uncertain Rule-Based Fuzzy Logic Systems: Introduction and new directions, pp. 213–231. Prentice-Hall, Inc., Upper-Saddle River (2001)

    Google Scholar 

  15. Pal, N.R., Pal, K., Keller, J.M., Bezdek, J.C.: A possibilistic fuzzy c-means clustering algorithm. IEEE Trans. Fuzzy Syst. 13(4), 517–530 (2005)

    Article  Google Scholar 

  16. Philips, W.E., Velthuinzen, R.P., Phuphanich, S., Hall, L.O., Clark, L.P., Sibiger, M.L.: Application of fuzzy c-means segmentation technique for tissue differentation in MR images of hemorrhagic gliobastoma multifrome. Magn. Reson. Imaging 13(2), 277–290 (1995)

    Article  Google Scholar 

  17. Pulido, M., Mancilla, A., Melin, P.: Ensemble neural networks with fuzzy logic integration for complex time series prediction. IJIEI 1(1), 89–103 (2010)

    Article  Google Scholar 

  18. Pulido, M., Mancilla, A., Melin, P.: An ensemble neural network architecture with fuzzy response integration for complex time series prediction. In: Evolutionary Design of Intelligent Systems in Modeling, Simulation and Control, pp. 85–110 (2009)

    Google Scholar 

  19. Pulido, M., Mancilla, A., Melin, P.: Ensemble neural networks with fuzzy integration for complex time series prediction. In: Bio-inspired Hybrid Intelligent Systems for Image Analysis and Pattern Recognition, pp. 143–155 (2009)

    Google Scholar 

  20. Rubio, E.; Castillo, O.: Interval type-2 fuzzy clustering for membership function generation. In: 2013 IEEE Workshop on Hybrid Intelligent Models and Applications (HIMA), pp. 13–18, 16–19 April 2013

    Google Scholar 

  21. Rubio, E.; Castillo, O.: Optimization of the interval type-2 fuzzy C-means using particle swarm optimization. In: Proceedings of NABIC 2013, pp. 10–15. Fargo, USA (2013)

    Google Scholar 

  22. Soto J., Castillo O., Soria J.: A New approach for time series prediction using ensembles of ANFIS models. In: Soft Computing for Intelligent Control and Mobile Robotics, Springer, vol. 318, pp. 483 (2015)

    Google Scholar 

  23. Soto J., Melin P., Castillo O.: Time series prediction using ensembles of neuro-fuzzy models with interval type-2 and type-1 fuzzy integrators. In: Proceedings of International Joint Conference on Neural Nerworks, Dallas, pp. 189–194 Texas, USA, 4–9 Aug 2013

    Google Scholar 

  24. Wang C., Zhang J.P.: Time series prediction based on ensemble ANFIS. In: Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, Guangzhou, 18–21 Aug 2005

    Google Scholar 

  25. Yang, M.-S., Hu, Y.-J., Lin, K.C.-R., Lin, C.C.-L.: Segmentation techniques for tissue differentiation in MRI of ophthalmology using fuzzy clustering algorithms. Magn. Reson. Imaging 20, 173–179 (2002)

    Article  Google Scholar 

  26. Yen, J., Langari, R.: Fuzzy Logic: Intelligence, Control, and Information. Prentice Hall, Upper Saddle River (1999)

    Google Scholar 

  27. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning-I. Inform. Sci. 8(3), 199–249 (1975)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Castillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rubio, E., Castillo, O., Melin, P. (2016). Interval Type-2 Fuzzy System Design Based on the Interval Type-2 Fuzzy C-Means Algorithm. In: Collan, M., Fedrizzi, M., Kacprzyk, J. (eds) Fuzzy Technology. Studies in Fuzziness and Soft Computing, vol 335. Springer, Cham. https://doi.org/10.1007/978-3-319-26986-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26986-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26984-9

  • Online ISBN: 978-3-319-26986-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics