Skip to main content

Multi-omics Multi-scale Big Data Analytics for Cancer Genomics

  • Conference paper
  • First Online:
Big Data Analytics (BDA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9498))

Included in the following conference series:

Abstract

Cancer research is emerging as a complex orchestration of genomics, data-sciences, and network-sciences. For improving cancer diagnosis and treatment strategies, data across multiple scales, from molecules like DNA, RNA, metabolites, to the population, need to be integrated. This requires handling of large volumes of high complexity “Omics” data, requiring powerful computational algorithms and mathematical tools. Here we present an integrative analytics approach for cancer genomics. This approach takes the multi-scale biological interactions as key considerations for model development. We demonstrate the use of this approach on a publicly available lung cancer dataset collected for 109 individuals from an 18 years long clinical study. From this data, we discovered novel disease markers and drug targets that were validated using peer-reviewed literature. These results demonstrate the power of big data analytics for deriving disease actionable insight.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cytoscape. http://www.cytoscape.org/

  2. AlQuraishi, M., Koytiger, G., Jenney, A., MacBeath, G., Sorger, P.K.: A multiscale statistical mechanical framework integrates biophysical and genomic data to assemble cancer networks. Nat. Genet. 46, 1363–1371 (2014)

    Article  Google Scholar 

  3. Amer Desouki, A.: sybilcycleFreeFlux: cycle-Free Flux balance analysis: Efficient removal of thermodynamically infeasible cycles from metabolic flux distributions (2014). R package version 1.0.1

    Google Scholar 

  4. Amer Desouki, A.: sybilEFBA: Using Gene Expression Data to Improve Flux Balance Analysis Predictions (2015). R package version 1.0.2

    Google Scholar 

  5. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., et al.: Gene ontology: tool for the unification of biology. Nat. Genet. 25(1), 25–29 (2000)

    Article  Google Scholar 

  6. Bair, E., Hastie, T., Paul, D., Tibshirani, R.: Prediction by supervised principal components. J. Am. Stat. Assoc. 101(473), 119–137 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bair, E., Tibshirani, R.: Semi-supervised methods to predict patient survival from gene expression data. PLoS Biol. 2(4), E108 (2004)

    Article  Google Scholar 

  8. Becker, S.A., Palsson, B.O.: Context-specific metabolic networks are consistent with experiments. PLoS Comput. Biol. 4(5), e1000082 (2008)

    Article  MathSciNet  Google Scholar 

  9. Brambilla, C., Laffaire, J., Lantuejoul, S., Moro-Sibilot, D., Mignotte, H., Arbib, F., Toffart, A.C., Petel, F., Hainaut, P., Rousseaux, S., et al.: Lung squamous cell carcinomas with basaloid histology represent a specific molecular entity. Clin. Cancer Res. 20(22), 5777–5786 (2014)

    Article  Google Scholar 

  10. Carlson, M.: GO.db: A set of annotation maps describing the entire Gene Ontology, R package version 3.1.2

    Google Scholar 

  11. Chen, J.S., Su, I.J., Leu, Y.W., Young, K.C., Sun, H.S.: Expression of t-cell lymphoma invasion and metastasis 2 (tiam2) promotes proliferation and invasion of liver cancer. Int. J. Cancer 130(6), 1302–1313 (2012)

    Article  Google Scholar 

  12. Collins, F.S., Varmus, H.: A new initiative on precision medicine. N. Engl. J. Med. 372, 793–795 (2015)

    Article  Google Scholar 

  13. Csardi, G., Nepusz, T.: The igraph software package for complex network research. Int. J. Complex Syst. 1695(5), 1–9 (2006)

    Google Scholar 

  14. Del Bufalo, D., Biroccio, A., Leonetti, C., Zupi, G.: Bcl-2 overexpression enhances the metastatic potential of a human breast cancer line. The FASEB J. 11(12), 947–953 (1997)

    Google Scholar 

  15. Gelius-Dietrich, G.: glpkAPI: R Interface to C API of GLPK (2015). R package version 1.3.0

    Google Scholar 

  16. Gelius-Dietrich, G., Desouki, A.A., Fritzemeier, C.J., Lercher, M.J.: sybil-efficient constraint-based modelling in R. BMC Syst. Biol. 7(1), 125 (2013)

    Article  Google Scholar 

  17. Hansen, J., Iyengar, R.: Computation as the mechanistic bridge between precision medicine and systems therapeutics. Clin. Pharmacol. Ther. 93(1), 117–128 (2013)

    Article  Google Scholar 

  18. Hucka, M., Finney, A., Sauro, H.M., Bolouri, H., Doyle, J.C., Kitano, H., Arkin, A.P., Bornstein, B.J., Bray, D., Cornish-Bowden, A., et al.: The systems biology markup language (sbml): a medium for representation and exchange of biochemical network models. Bioinformatics 19(4), 524–531 (2003)

    Article  Google Scholar 

  19. Jerby, L., Ruppin, E.: Predicting drug targets and biomarkers of cancer via genome-scale metabolic modeling. Clin. Cancer Res. 18(20), 5572–5584 (2012)

    Article  Google Scholar 

  20. Kanehisa, M., Goto, S.: Kegg: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28(1), 27–30 (2000)

    Article  Google Scholar 

  21. Khazaei, T., McGuigan, A., Mahadevan, R.: Ensemble modeling of cancer metabolism. Front. Physiol. 3, 135 (2012)

    Article  Google Scholar 

  22. Kitano, H.: Systems biology: a brief overview. Science 295(5560), 1662–1664 (2002)

    Article  Google Scholar 

  23. Li, X., Cowell, J.K., Sossey-Alaoui, K.: CLCA2 tumour suppressor gene in 1p31 is epigenetically regulated in breast cancer. Oncogene 23(7), 1474–1480 (2004)

    Article  Google Scholar 

  24. Li, Y., Chen, L.: Big biological data: challenges and opportunities. Genomics, Proteomics Bioinform. 12(5), 187–189 (2014)

    Article  Google Scholar 

  25. Martın H, J.A., Bourdon, J.: Solving hard computational problems efficiently: asymptotic parametric complexity 3-coloring algorithm. PloS One 8(1), e53437 (2013)

    Article  Google Scholar 

  26. Mazocchi, F.: Complexity in biology. Exceeding the limits of reductionism and determinism using complexity theory. EMBO Rep. 9, 10–14 (2008)

    Article  Google Scholar 

  27. Mazocchi, F.: Complexity and the reductionism-holism debate in systems biology. Wiley Interdiscip. Rev. Syst. Biol. Med. 4, 413–427 (2012)

    Article  Google Scholar 

  28. Miller, R., Halpern, J.: Regression with censored data. Biometrika 69(3), 521–531 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  29. Moreno, J.D., Zhu, Z.I., Yang, P.C., Bankston, J.R., Jeng, M.T., Kang, C., Wang, L., Bayer, J.D., Christini, D.J., Trayanova, N.A., et al.: A computational model to predict the effects of class i anti-arrhythmic drugs on ventricular rhythms. Sci. Transl. Med. 3(98), 98ra83 (2011)

    Article  Google Scholar 

  30. Oosting, J., Eilers, P., Menezes, R.: quantsmooth: Quantile smoothing and genomic visualization of array data. R package version 1.35.0 (2014)

    Google Scholar 

  31. Orchard, S., Ammari, M., Aranda, B., Breuza, L., Briganti, L., Broackes-Carter, F., Campbell, N.H., Chavali, G., Chen, C., Del-Toro, N., et al.: The mintact projectintact as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res. 42, 358–363 (2013)

    Article  Google Scholar 

  32. Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M.A., Bender, D., Maller, J., Sklar, P., De Bakker, P.I., Daly, M.J., et al.: Plink: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81(3), 559–575 (2007)

    Article  Google Scholar 

  33. Ritchie, M.D., Holzinger, E.R., Li, R., Pendergrass, S.A., Kim, D.: Methods of integrating data to uncover genotype-phenotype interactions. Nat. Rev. Genet. 16(2), 85–97 (2015)

    Article  Google Scholar 

  34. Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., Smyth, G.K.: limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015)

    Article  Google Scholar 

  35. Segrè, A.V., Groop, L., Mootha, V.K., Daly, M.J., Altshuler, D., Consortium, D., Investigators, M., et al.: Common inherited variation in mitochondrial genes is not enriched for associations with type 2 diabetes or related glycemic traits. PLoS Genet. 6(8), e1001058 (2010)

    Google Scholar 

  36. Sîrbu, A., Ruskin, H.J., Crane, M.: Cross-platform microarray data normalisation for regulatory network inference. PLoS One 5(11), e13822 (2010)

    Article  Google Scholar 

  37. Stephens, Z.D., Lee, S.Y., Faghri, F., Campbell, R.H., Zhai, C., Efron, M.J., Iyer, R., Schatz, M.C., Sinha, S., Robinson, G.E.: Big data: astronomical or genomical? PLoS Biol. 13(7), e1002195 (2015)

    Article  Google Scholar 

  38. Talukder, A.K., Ravishankar, S., Sasmal, K., Gandham, S., Prabhukumar, J., Achutharao, P.H., Barh, D., Blasi, F.: Xomannotate: analysis of heterogeneous and complex exome-a step towards translational medicine. PLoS ONE 10, e0123569 (2015)

    Article  Google Scholar 

  39. Thiele, I., Swainston, N., Fleming, R.M., Hoppe, A., Sahoo, S., Aurich, M.K., Haraldsdottir, H., Mo, M.L., Rolfsson, O., Stobbe, M.D., et al.: A community-driven global reconstruction of human metabolism. Nat. Biotechnol. 31(5), 419–425 (2013)

    Article  Google Scholar 

  40. Wickham, H.: ggplot2: Elegant Graphics for Data Analysis. Springer Science & Business Media, New York (2009)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asoke K. Talukder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Agarwal, M., Adhil, M., Talukder, A.K. (2015). Multi-omics Multi-scale Big Data Analytics for Cancer Genomics. In: Kumar, N., Bhatnagar, V. (eds) Big Data Analytics. BDA 2015. Lecture Notes in Computer Science(), vol 9498. Springer, Cham. https://doi.org/10.1007/978-3-319-27057-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27057-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27056-2

  • Online ISBN: 978-3-319-27057-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics