Skip to main content

Lifelong Learning Selection Hyper-heuristics for Constraint Satisfaction Problems

  • Conference paper
  • First Online:
Advances in Artificial Intelligence and Soft Computing (MICAI 2015)

Abstract

Selection hyper-heuristics are methods that manage the use of different heuristics and recommend one of them that is suitable for the current problem space under exploration. In this paper we describe a hyper-heuristic model for constraint satisfaction that is inspired in the idea of a lifelong learning process that allows the hyper-heuristic to continually improve the quality of its decisions by incorporating information from every instance it solves. The learning takes place in a transparent way because the learning process is executed in parallel in a different thread than the one that deals with the user’s requests. We tested the model on various constraint satisfaction problem instances and obtained promising results, specially when tested on unseen instances from different classes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bitner, J.R., Reingold, E.M.: Backtrack programming techniques. Commun. ACM 18, 651–656 (1975)

    Article  MATH  Google Scholar 

  2. Bittle, S.A., Fox, M.S.: Learning and using hyper-heuristics for variable and value ordering in constraint satisfaction problems. In: Proceedings of the 11th Annual Conference Companion on Genetic and Evolutionary Computation Conference: Late Breaking Papers, pp. 2209–2212. ACM (2009)

    Google Scholar 

  3. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by weighting constraints. In: European Conference on Artificial Intelligence (ECAI 2004), pp. 146–150 (2004)

    Google Scholar 

  4. Brelaz, D.: New methods to colour the vertices of a graph. Commun. ACM 22, 251–256 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  5. Burke, E., Hart, E., Kendall, G., Newall, J., Ross, P., Shulenburg, S.: Hyper-heuristics: an emerging direction in modern research technology. In: Handbook of metaheuristics, pp. 457–474. Kluwer Academic Publishers (2003)

    Google Scholar 

  6. Capodieci, N., Hart, E., Cabri, G.: Artificial immune systems in the context of autonomic computing: integrating design paradigms. In: Proceedings of the 2014 Conference Companion on Genetic and Evolutionary Computation Companion, GECCO Comp 2014, pp. 21–22. ACM, New York (2014)

    Google Scholar 

  7. Dechter, R., Meiri, I.: Experimental evaluation of preprocessing algorithms for constraint satisfaction problems. Artif. Intell. 38(2), 211–242 (1994)

    Article  MathSciNet  Google Scholar 

  8. Gagliolo, M., Schmidhuber, J.: Dynamic algorithm portfolios. Ann. Math. Artif. Intell. 47, 3–4 (2006)

    Article  MathSciNet  Google Scholar 

  9. Gent, I., MacIntyre, E., Prosser, P., Smith, B., T.Walsh: An empirical study of dynamic variable ordering heuristics for the constraint satisfaction problem. In: Proceedings of the International Conference on Principles and Practice of Constraint Programming (CP 1996), pp. 179–193 (1996)

    Google Scholar 

  10. Haralick, R.M., Elliott, G.L.: Increasing tree search efficiency for constraint satisfaction problems. Artif. Intell. 14, 263–313 (1980)

    Article  Google Scholar 

  11. Hart, E., Sim, K.: On the life-long learning capabilities of a NELLI*: a hyper-heuristic optimisation system. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 282–291. Springer, Heidelberg (2014)

    Google Scholar 

  12. Huberman, B.A., Lukose, R.M., Hogg, T.: An economics approach to hard computational problems. Science 27, 51–53 (1997)

    Article  Google Scholar 

  13. Sim, K.E.H., Paechter, B.: A lifelong learning hyper-heuristic method for bin packing. Evol. Comput. 23(1), 37–67 (2015)

    Article  Google Scholar 

  14. Minton, S., Johnston, M.D., Phillips, A., Laird, P.: Minimizing conflicts: a heuristic repair method for CSP and scheduling problems. Artif. Intell. 58, 161–205 (1992)

    Article  MATH  Google Scholar 

  15. O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., O’Sullivan, B.: Using case-based reasoning in an algorithm portfolio for constraint solving. In: Proceedings of the 19th Irish Conference on Artificial Intelligence and Cognitive Science (2008)

    Google Scholar 

  16. Ortiz-Bayliss, J.C., Terashima-Marín, H., Conant-Pablos, S.E.: Learning vector quantization for variable ordering in constraint satisfaction problems. Pattern Recogn. Lett. 34(4), 423–432 (2013)

    Article  Google Scholar 

  17. Petrovic, S., Epstein, S.L.: Random subsets support learning a mixture of heuristics. Int. J. Artif. Intell. Tools 17, 501–520 (2008)

    Article  Google Scholar 

  18. Rice, J.R.: The algorithm selection problem. Adv. Comput. 15, 65–118 (1976)

    Article  Google Scholar 

  19. Ross, P., Marín-Blázquez, J.: Constructive hyper-heuristics in class timetabling. In: Proceedings of the 2005 IEEE Congress on Evolutionary Computation (CEC 2005), vol. 2. IEEE Press (2005)

    Google Scholar 

  20. Silver, D.L.: Machine lifelong learning: challenges and benefits for artificial general intelligence. In: Schmidhuber, J., Thórisson, K.R., Looks, M. (eds.) AGI 2011. LNCS, vol. 6830, pp. 370–375. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  21. Silver, D.L., Yang, Q., Li, L.: Lifelong machine learning systems: beyond learning algorithms. In: Lifelong Machine Learning, Papers from the 2013 AAAI Spring Symposium, Palo Alto, California, USA, 25–27 March 2013

    Google Scholar 

  22. Sim, K., Hart, E.: An improved immune inspired hyper-heuristic for combinatorial optimisation problems. In: Proceedings of the 2014 Conference on Genetic and Evolutionary Computation, GECCO 2014, pp. 121–128. ACM, New York (2014)

    Google Scholar 

  23. Soto, R., Crawford, B., Monfroy, E., Bustos, V.: Using autonomous search for generating good enumeration strategy blends in constraint programming. In: Murgante, B., Gervasi, O., Misra, S., Nedjah, N., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2012, Part III. LNCS, vol. 7335, pp. 607–617. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Acknowledgments

This research was supported in part by ITESM Research Group with Strategic Focus in Intelligent Systems and CONACyT Basic Science Project under grant 241461.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Carlos Ortiz-Bayliss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Ortiz-Bayliss, J.C., Terashima-Marín, H., Conant-Pablos, S.E. (2015). Lifelong Learning Selection Hyper-heuristics for Constraint Satisfaction Problems. In: Sidorov, G., Galicia-Haro, S. (eds) Advances in Artificial Intelligence and Soft Computing. MICAI 2015. Lecture Notes in Computer Science(), vol 9413. Springer, Cham. https://doi.org/10.1007/978-3-319-27060-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27060-9_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27059-3

  • Online ISBN: 978-3-319-27060-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics