Skip to main content

Improved Approximating Algorithms for Computing Energy Constrained Minimum Cost Steiner Trees

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9528))

Abstract

Nowadays, two issues in data transmission for networks are attracting considerable interest in the research community: energy efficiency and cost minimization, i.e., to minimize the energy consumed and resource occupied. This paper considers approximation algorithms for the energy constrained minimum cost Steiner tree (ECMST) problem which have applications in energy-efficient minimum cost multicast.

Let \(G=(V,\, E)\) be a given undirected graph, \(S\subseteq V\) be a terminal set, and \(c:\, E\rightarrow \mathbb {Z}_{0}^{+}\) and \(d:\, E\rightarrow \mathbb {Z}_{0}^{+}\) respectively be the cost function and energy consumption function for the edges. For a threshold D, ECMST is to compute a minimum cost tree spanning all specified terminals of S, with its total energy consumption bounded by D. This paper first shows that ECMST is pseudo-polynomial solvable when the number of the terminals are fixed. Then it presents a polynomial time factor-\((2(1+\frac{1}{k}),\,2(1+k))\) approximation algorithm via Lagrangian Relaxation for any \(k>0\). Last but not the least, by a more sophisticated application of Lagrangian relaxation technique, we obtain an approximation algorithm with ratio \((2,\,2+\epsilon )\) for any fixed \(\epsilon >0\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aggarwal, V., Aneja, Y.P., Nair, K.P.K.: Minimal spanning tree subject to a side constraint. Comput Oper. Res. 9(4), 287–296 (1982)

    Article  Google Scholar 

  2. Bharath-Kumar, K., Jaffe, J.M.: Routing to multiple destinations in computer networks. IEEE Trans. Commun. 31(3), 343–351 (1983)

    Article  MATH  Google Scholar 

  3. Byrka, J., Grandoni, F., Rothvoss, T., Sanità, L.: Steiner tree approximation via iterative randomized rounding. J. ACM (JACM) 60(1), 6 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chao, P., Hong, S.: A new approximation algorithm for computing 2-restricted disjoint paths. IEICE Trans. Inf. Syst. 90(2), 465–472 (2007)

    Google Scholar 

  5. Charikar, M., Chekuri, C., Cheung, T., Dai, Z., Goel, A., Guha, S., Li, M.: Approximation algorithms for directed steiner problems. J. Algorithms 33(1), 73–91 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, G., Burkard, R.E.: Constrained steiner trees in halin graphs. RAIRO-Oper. Res. 37(03), 179–194 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, Y.H.: Polynomial time approximation schemes for the constrained minimum spanning tree problem. J. Appl. Math. 1–8, 2012 (2012)

    MathSciNet  Google Scholar 

  8. Dreyfus, S.E., Wagner, R.A.: The steiner problem in graphs. Networks 1(3), 195–207 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  9. Garey, M.R., Graham, R.L., Johnson, D.S.: The complexity of computing steiner minimal trees. SIAM J. Appl. Math. 32(4), 835–859 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gilbert, E.N., Pollak, H.O.: Steiner minimal trees. SIAM J. Appl. Math. 16(1), 1–29 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  11. Guo, L.: Improved lp-rounding approximations for the k-disjoint restricted shortest paths problem. Front. Algorithmics 2014, 94–104 (2014)

    Article  MATH  Google Scholar 

  12. Guo, L., Shen, H., Liao, K.: Improved approximation algorithms for computing k disjoint paths subject to two constraints. J. Comb. Optim. 29(1), 153–164 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Guo, L., Liao, K., Shen, H., Li, P.: Efficient approximation algorithms for computing k-disjoint restricted shortest paths. In: 27th ACM Symposium on Parallelism in Algorithms and Architectures, pp. 62–64 (2015)

    Google Scholar 

  14. Hajiaghayi, M.T., Kortsarz, G., Salavatipour, M.R.: Approximating buy-at-bulk and shallow-light k-Steiner trees. In: Díaz, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds.) APPROX 2006 and RANDOM 2006. LNCS, vol. 4110, pp. 152–163. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Hassin, R., Levin, A.: An efficient polynomial time approximation scheme for the constrained minimum spanning tree problem using matroid intersection. SIAM J. Comput. 33(2), 261–268 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kompella, V.P., Pasquale, J.C., Polyzos, G.C.: Multicast routing for multimedia communication. IEEE/ACM Trans. Network. (TON) 1(3), 286–292 (1993)

    Article  Google Scholar 

  17. Lorenz, D.H., Raz, D.: A simple efficient approximation scheme for the restricted shortest path problem. Oper. Res. Lett. 28(5), 213–219 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Marathe, M.V., Ravi, R., Sundaram, R., Ravi, S.S., Rosenkrantz, D.J., Hunt III, H.B.: Bicriteria network design problems. J. Algorithms 28(1), 142–171 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Megiddo, N.: Applying parallel computation algorithms in the design of serial algorithms. J. ACM 30(4), 852–865 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  20. Orda, A., Sprintson, A.: Efficient algorithms for computing disjoint QoS paths. IEEE INFOCOM 1, 727–738 (2004)

    Google Scholar 

  21. Prömel, H.J., Steger, A.: A new approximation algorithm for the steiner tree problem with performance ratio 5/3. J. Algorithms 36(1), 89–101 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ravi, R., Goemans, M.X.: The constrained minimum spanning tree problem. In: Karlsson, R., Lingas, A. (eds.) SWAT 1996. LNCS, vol. 1097, pp. 66–75. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  23. Robins, G., Zelikovsky, A.: Tighter bounds for graph steiner tree approximation. SIAM J. Discrete Math. 19(1), 122–134 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rosenwein, M.B., Wong, R.T.: A constrained steiner tree problem. Eur. J. Oper. Res. 81(2), 430–439 (1995)

    Article  MATH  Google Scholar 

  25. Ying, X., Rong, Q.: A hybrid scatter search meta-heuristic for delay-constrained multicast routing problems. Appl. Intell. 36(1), 229–241 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This project was supported by National Science Foundation of China (#61300025), Doctoral Fund of Ministry of Education of China for Young Scholars (#20123514120013) and Natural Science Foundation of Fujian Province (#2012J05 115).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longkun Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Zou, N., Guo, L. (2015). Improved Approximating Algorithms for Computing Energy Constrained Minimum Cost Steiner Trees. In: Wang, G., Zomaya, A., Martinez, G., Li, K. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2015. Lecture Notes in Computer Science(), vol 9528. Springer, Cham. https://doi.org/10.1007/978-3-319-27119-4_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27119-4_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27118-7

  • Online ISBN: 978-3-319-27119-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics