Skip to main content

Cost-Efficient and Scalable Multicast Tree in Software Defined Networking

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9529))

Abstract

Multicast can effectively reduce the cost of network resources, and Software Defined Networking (SDN) makes Steiner tree a feasible and promising way for multicast. However, multicast still suffers from a scalability problem when the number of groups is large since the flow table size is limited. In this paper, therefore, we propose the Degree-dependent Branch-node Weighted Steiner Tree (DBWST) problem, which is NP-hard. This problem aims to minimize the total cost of edges and branch nodes. The cost of a branch node is degree-dependent. We design an approximation algorithm, named Path-Vector based Harmony Search Algorithm (PVHS), to solve this problem. The path vector means a solution vector in a harmony and denotes the ordered set of nodes from source to a destination in the multicast tree. Globle and local optimization are combined appropriately. Simulation results on randomly generated topologies indicate that the trees obtained by PVHS are more cost-efficient and scalable over the existing ways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Software-defined networking (SDN) definition. https://www.opennetworking.org/sdn-resources/sdn-definition

  2. OpenFlow Switch Specification, Open Networking Foundation Std.1.4.0, Oct 2013

    Google Scholar 

  3. Agarwal, S., Kodialam, M., Lakshman, T.V.: Traffic engineering in software defined networks. In: IEEE Proceedings of INFOCOM, pp. 2211–2219 (2013)

    Google Scholar 

  4. Benslimane, A.: Multimedia Multicast on the Internet. ISTE, Wiley, London (2013)

    Google Scholar 

  5. Bianco, A., Giaccone, P., Giraudo, E.M., Neri, F., Schiattarella, E.: NXG07-3: multicast support for a storage area network switch. In: GLOBECOM, pp. 1–6, November 2006

    Google Scholar 

  6. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Computations, pp. 85–103 (1972)

    Google Scholar 

  7. Yu, Y., Zhen, Q., Xin, L., et al.: OFM: a novel multicast mechanism based on openflow. Adv. Inf. Sci. Serv. Sci. 4(9) (2012)

    Google Scholar 

  8. Zhao, M., Jia, B., Wu, M., et al.: Software defined network-enabled multicast for multi-party video conferencing systems. In: IEEE International Conference on Communications (ICC), pp. 1729–1735 (2014)

    Google Scholar 

  9. McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J., Shenker, S., Turner, J.: OpenFlow: enabling innovationin campus networks. ACM SIGCOMM Comput. Commun. Rev. 38(2), 69–74 (2008)

    Article  Google Scholar 

  10. Jia, W.K., Wang, L.C.: A unified unicast and multicast routing and forwarding algorithm for software-defined datacenter networks. IEEE J. Sel. Areas Commun. 31(12), 2646–2657 (2013)

    Article  Google Scholar 

  11. Bloom, B.H.: Space/time trade-offs in hash coding with allowableerrors. Commun. ACM 13(7), 422–426 (1970)

    Article  MATH  Google Scholar 

  12. Tian, J., Neufeld, G.: Forwarding state reduction for sparse modemulticast communication. In: IEEE Proceedings of INFOCOM, pp. 711–719 (1998)

    Google Scholar 

  13. Yang, D.-N., Liao, W.: Optimal state allocation for multicast communications withexplicit multicast forwarding. IEEE Trans. Parallel Distrib. Syst. 19(4), 476–488 (2008)

    Article  Google Scholar 

  14. Stoica, I., Ng, T., Zhang, H.: Reunite: a recursive unicast approachto multicast. In: IEEE Proceedings of INFOCOM, pp. 1644–1653 (2000)

    Google Scholar 

  15. Wong, T., Katz, R.: An analysis of multicast forwarding state scalability. In: IEEE Proceedings of International Conference on NetworkProtocols, pp. 105–115 (2000)

    Google Scholar 

  16. Huang, L.H., Hung, H.J., Lin, C.C., et al.: Scalable and bandwidth-efficient multicast for software-defined networks. In: IEEE Global Communications Conference (GLOBECOM), pp. 1890–1896 (2014)

    Google Scholar 

  17. Forsati, R., Haghighat, A.T., Mahdavi, M.: Harmony search based algorithms for bandwidth-delay-constrained least-cost multicast routing. Comput. Commun. 2505–2519 (2008)

    Google Scholar 

  18. Hua, W., Xiangxu, M., Shuai, L., Hong, X.: A tree-based particle swarm optimization for multicast routing. Comput. Netw. 2775–2786 (2010)

    Google Scholar 

  19. Lee, K.S., Geem, Z.W.: A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. Comput. Methods Appl. Mech. Eng. 3902–3933 (2005)

    Google Scholar 

  20. Jaberipour, M., Khorram, E.: A new harmony search algorithm for solving mixed–discrete engineering optimization problems. Eng. Optim. 507–523 (2011)

    Google Scholar 

  21. Nekooei, K., Farsangi, M.M., Nezamabadi-Pour, H., Lee, K.Y.: An improved multi-objective harmony search for optimal placement of DGs in distribution systems. IEEE Trans. Smart Grid 557–567 (2013)

    Google Scholar 

  22. Karahan, H., Gurarslan, G., Geem, Z.W.: Parameter estimation of the nonlinear muskingum flood-routing model using a hybrid harmony search algorithm. J. Hydrol. Eng. 352–360 (2013)

    Google Scholar 

  23. Wang, L., Yang, R., Xu, Y., Niu, Q., Pardalos, P.M., Fei, M.: An improved adaptive binary Harmony search algorithm. Inf. Sci. 58–87 (2013)

    Google Scholar 

  24. Waxman, B.M.: Routing of multipoint connections. IEEE J. Sel. Areas Commun. 1617–1622 (1988)

    Google Scholar 

Download references

Acknowledgment

The study is supported by the Natural Science Foundation of Shandong Province (Grant No. ZR2015FM008; ZR2013FM029), the Science and Technology Development Program of Jinan (Grant No. 201303010), the National Natural Science Foundation of China (NSFC No. 60773101), and the Fundamental Research Funds of Shandong University (Grant No. 2014JC037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhou, S., Wang, H., Yi, S., Zhu, F. (2015). Cost-Efficient and Scalable Multicast Tree in Software Defined Networking. In: Wang, G., Zomaya, A., Martinez, G., Li, K. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2015. Lecture Notes in Computer Science(), vol 9529. Springer, Cham. https://doi.org/10.1007/978-3-319-27122-4_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27122-4_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27121-7

  • Online ISBN: 978-3-319-27122-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics