Abstract
In this paper we present and evaluate a map-based RGB-D SLAM (Simultaneous Localization and Mapping) system employing a novel idea of combining efficient visual odometry and a persistent map of 3D point features used to jointly optimize the sensor (robot) poses and the feature positions. The optimization problem is represented as a factor graph. The SLAM system consists of a front-end that tracks the sensor frame-by-frame, extracts point features, and associates them with the map, and a back-end that manages and optimizes the map. We propose a robust approach to data association, which combines efficient selection of candidate features from the map, matching of visual descriptors guided by the sensor pose prediction from visual odometry, and verification of the associations in both the image plane and 3D space. The improved accuracy and robustness is demonstrated on publicly available data sets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Computer Vision and Image Understanding 110(3), 346–359 (2008)
Belter, D., Skrzypczyński, P.: Precise self-localization of a walking robot on rough terrain using parallel tracking and mapping. Industrial Robot: An International Journal 40(3), 229–237 (2013)
Belter, D., Nowicki, M., Skrzypczyński, P.: On the performance of pose-based RGB-D visual navigation systems. In: Cremers, D., et al. (eds.) Computer Vision – ACCV 2014. LNCS, vol. 9004, pp. 407–423. Springer (2015)
Belter, D., Skrzypczyński, P.: The importance of measurement uncertainty modeling in the feature-based RGB-D SLAM. In: Proc. Int. Workshop on Robot Motion and Control, Poznań, pp. 308–313 (2015)
Cummins, M., Newman, P.: Accelerating FAB-MAP with Concentration Inequalities. IEEE Trans. on Robotics 26(6), 1042–1050 (2010)
Endres, F., Hess, J., Sturm, J., Cremers, D., Burgard, W.: 3-D Mapping with an RGB-D Camera. IEEE Trans. on Robotics 30(1), 177–187 (2014)
Fioraio, N., Di Stefano, L.: SlamDunk: affordable real-time RGB-D SLAM. In: Computer Vision – ECCV 2014 Workshops. LNCS, vol. 8925, pp. 401-414. Springer (2015)
Gil, A., Martinez Mozos, O., Ballesta, M., Reinoso, O.: A comparative evaluation of interest point detectors and local descriptors for visual SLAM. Machine Vision and Applications 21(6), 905–920 (2010)
Grisetti, G., Kümmerle, R., Ni, K.: Robust optimization of factor graphs by using condensed measurements. In: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots & Systems, Vilamoura, pp. 581–588 (2012)
Handa, A., Whelan, T., McDonald, J. B., Davison, A. J.: A benchmark for RGB-D visual odometry, 3D reconstruction and SLAM. In: IEEE Int. Conf. on Robotics & Automation, Hong Kong, pp. 1524–1531 (2014)
Henry, P., Krainin, M., Herbst, E., Ren, X., Fox, D.: RGB-D mapping: Using Kinect-style depth cameras for dense 3D modeling of indoor environments. Int. Journal of Robot. Res. 31(5), 647–663 (2012)
Kerl, C., Sturm, J., Cremers, D.: Robust odometry estimation for RGB-D cameras. In: Proc. IEEE Int. Conf. on Robotics & Automation, Karlsruhe, pp. 3748–3754 (2013)
Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In: Proc. Int. Symp. on Mixed and Augmented Reality, Nara, pp. 225–234 (2007)
Kümmerle, R., Grisetti, G., Strasdat, H., Konolige, K., Burgard, W.: g2o: A general framework for graph optimization. In: IEEE Int. Conf. on Robotics & Automation, Shanghai, pp. 3607–3613 (2011)
Maier, R., Sturm, J., Cremers, D.: Submap-based bundle adjustment for 3D reconstruction from RGB-D Data. In: Pattern Recognition. LNCS, vol. 8753, pp. 54–65. Springer (2014)
Nowicki, M., Skrzypczyński, P.: Combining photometric and depth data for lightweight and robust visual odometry. In: European Conf. on Mobile Robots, Barcelona, pp. 125–130 (2013)
Ozawa, R., Takaoka, Y., Kida, Y., Nishiwaki, K., Chestnutt, J., Kuffner, J., Inoue, H.: Using visual odometry to create 3D maps for online footstep planning. In: IEEE Int. Conf. on Systems, Man and Cybernetics, Hawaii, pp. 2643–2648 (2005)
Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: IEEE Int. Conf. on Computer Vision, pp. 2564–2571 (2011)
Scherer, S., Zell, A.: Efficient onboard RGBD-SLAM for autonomous MAVs. In: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots & Systems, Tokyo, pp. 1062–1068 (2013)
Shi, J., Tomasi, C.: Good features to track. In: IEEE Conf. on Comp. Vis. and Pattern Recog., Seattle, pp. 593–600 (1994)
Strasdat, H., Davison, A. J. Montiel, J., Konolige, K.: Double window optimisation for constant time visual SLAM. In: Proc. Int. Conf. on Computer Vision, Los Alamitos, pp. 2352–2359 (2011)
Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for the evaluation of RGB-D SLAM systems. In: IEEE/RSJ Int. Conf. on Intelligent Robots & Systems, Vilamoura, pp. 573–580 (2012)
Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment – a modern synthesis. In: Vision Algorithms: Theory and Practice. LNCS, vol. 1883, pp. 298–372. Springer (2000)
Umeyama, S.: Least-squares estimation of transformation parameters between two point patterns. IEEE Trans. on Pattern Analysis & Machine Intelligence 13(4), 376–380 (1991)
Whelan, T., Johannsson, H., Kaess, M., Leonard, J., McDonald, J.: Robust real-time visual odometry for dense RGB-D mapping. In: IEEE Int. Conf. on Robotics & Automation, Karlsruhe, pp. 5704–5711 (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Belter, D., Nowicki, M., Skrzypczyński, P. (2016). Accurate Map-Based RGB-D SLAM for Mobile Robots. In: Reis, L., Moreira, A., Lima, P., Montano, L., Muñoz-Martinez, V. (eds) Robot 2015: Second Iberian Robotics Conference. Advances in Intelligent Systems and Computing, vol 418. Springer, Cham. https://doi.org/10.1007/978-3-319-27149-1_41
Download citation
DOI: https://doi.org/10.1007/978-3-319-27149-1_41
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-27148-4
Online ISBN: 978-3-319-27149-1
eBook Packages: Computer ScienceComputer Science (R0)