Skip to main content

Effect of Bias Temperature Instability on Soft Error Rate

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9532))

  • 1749 Accesses

Abstract

Aging and soft errors have become the two most critical reliability issues for nano-scaled CMOS designs. With the decreasing of device sizes the aging effect cannot be ignored during soft error rate (SER) estimation. In this paper, firstly the aging effect due to bias temperature instability (BTI) is analyzed on circuits using 32-nm CMOS technology for soft errors. Secondly, we derive an accurate SER estimation model which can incorporate BTI impact, including the negative BTI impact on PMOS and the positive BTI impact on NMOS. This model computes the failures in time (FIT) rate of sequential circuits. Experiments are carried on ISCAS89 circuits, and two findings are discovered: (1) for ten years simulation operating time, the maximum SER difference can go up to 12.5 % caused by BTI impact; (2) the BTI-aware SER grows quickly during the early operating time, and grows slowly in the later years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Seifert, N., Gill, B., Zia, V., Zhang, M., Ambrose, V.: On the scalability of redundancy based SER mitigation schemes. In: IEEE International Conference on Integrated Circuit Design and Technology, pp. 1–9. IEEE Press, Austin (2007)

    Google Scholar 

  2. Mavis, D.G., Eaton, P.H.: SEU and SET modeling and mitigation in deep submicron technologies. In: 45th Annual IEEE International Reliability Physics Symposium, pp. 293–305. IEEE Press, Phoenix (2007)

    Google Scholar 

  3. Baumann, R.C.: Radiation-induced soft errors in advanced semiconductor technologies. IEEE Trans. Device Mater. Reliab. 5, 305–316 (2005)

    Article  Google Scholar 

  4. Rossi, D., Cazeaux, J.M., Omana, M., Metra, C., Chatterjee, A.: Accurate linear model for SET critical charge estimation. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 17, 1161–1166 (2009)

    Article  Google Scholar 

  5. Cazeaux, J.M., Rossi, D., Omana, M., Chatterjee, A., Metra, C.: On-transistor level gate sizing for increased robustness to transient faults. In: 11th IEEE International On-Line Testing Symposium (IOLTS), pp. 23–28. IEEE Press, Saint Raphael (2005)

    Google Scholar 

  6. Rossi, D., Omana, M., Metra, C.: Transient fault and soft error on-die monitoring scheme. In: 25th IEEE International Symposium on DFT VLSI System, pp. 391–398. IEEE Press, Kyoto (2010)

    Google Scholar 

  7. Omana, M., Rossi, D., Metra, C.: High performance robust latches. IEEE Trans. Comput. 59, 1455–1465 (2010)

    Article  MathSciNet  Google Scholar 

  8. Holcomb, D., Li, W., Seshia, S.A.: Design as you see FIT: system-level soft error analysis of sequential circuits. In: DATE 2009 the Conference on Design, Automation and Test in Europe, pp. 785–790. European Design and Automation Association, Leuven (2009)

    Google Scholar 

  9. Keane, J., Kim, T.-H., Kim, C.H.: An on-chip NBTI sensor for measuring PMOS threshold voltage degradation. IEEE Trans. VLSI Syst. 18, 947–956 (2010)

    Article  Google Scholar 

  10. Huard, V., Denais, M.: Hole trapping effect on methodology for DC and AC negative bias temperature instability measurements in PMOS transistors. In: 42nd Annual IEEE International Reliability Physics Symposium, pp. 40–45. IEEE Press, Crolles (2004)

    Google Scholar 

  11. Siddiqua, T., Gurumurthi, S., Stan, M.R.: Modeling and analyzing NBTI in the presence of process variation. In: International Symposium on Quality of Electronic Design (ISQED), pp. 1–8. IEEE Press, Santa Clara (2011)

    Google Scholar 

  12. Rossi, D., Omana, M., Metra, C., Paccagnella, A.: Impact of aging phenomena on soft error susceptibility. In: International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pp. 18–24. IEEE Press, Vancouver (2011)

    Google Scholar 

  13. Bagatin, M., Gerardin, S., Paccagnella, A., Faccio, F.: Impact of NBTI aging on the single-event upset of SRAM cells. IEEE Trans. Nucl. Sci. 57, 3245–3250 (2010)

    Article  Google Scholar 

  14. Cannon, E.H., Osowski, A.K., Kanj, R., Reinhardt, D.D., Joshi, R.V.: The impact of aging effects and manufacturing variation on SRAM soft error rate. IEEE Trans. Device Mater. Rel. 8, 145–152 (2008)

    Article  Google Scholar 

  15. Ramakrishnan, K., Rajaraman, R., Suresh, S., Vijaykrishnan, N., Xie, Y., Irwin, M.J.: Variation impact on SER of combinational circuits. In: 8th International Symposium on Quality Electronic Design (ISQED), pp. 911–916. IEEE Press, Washington, DC (2007)

    Google Scholar 

  16. Harada, R., Mitsuyama, Y., Hashimoto, M., Onoye, T.: Impact of NBTI-induced pulse-width modulation on SET pulse-width measurement. IEEE Trans. Nucl. Sci. 60, 2630–2634 (2013)

    Article  Google Scholar 

  17. Lin, C.Y.H., Huang, R.H.-M., Wen, C.H.-P., Chang, A.C.-C.: Aging-aware statistical soft-error-rate analysis for nano-scaled CMOS designs. In: International Symposium on VLSI-DAT, pp. 1–4. IEEE Press, Hstinchu (2013)

    Google Scholar 

  18. Rossi, D., Omana, M., Metra, C., Paccagnella, A.: Impact of bias temperature instability on soft error susceptibility. IEEE Trans. VLSI Syst. 23, 743–751 (2015)

    Article  Google Scholar 

  19. Agarwal, M., et al.: Optimized circuit failure prediction for aging: practicality and promise. In: IEEE International Test Conference (ITC), pp. 1–10. IEEE Press, Santa Clara (2008)

    Google Scholar 

  20. Khan, S., Hamidioui, S., Kukner, H., Raghavan P., Catthoor, F.: BTI impact on logical gates in nano-scale CMOS technology. In: 15th IEEE International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS), pp. 348–353. IEEE Press, Tallinn (2012)

    Google Scholar 

  21. Hazucha, P., Svensson, C.: Impact of CMOS technology scaling on the atmospheric neutron soft error rate. IEEE Trans. Nuclear Sci. 47, 2586–2594 (2000)

    Article  Google Scholar 

  22. Berkeley FIT Estimation Tool (BFIT). http://www.eecs.berkeley.edu/˜holcomb/BFIT.htm

  23. Ziegler, J.: Terrestrial cosmic rays. IBM J. Res. Develop. 40, 19–39 (1996)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (Grant No. 61432017) and the Excellent University Young Teachers Training Program of Shanghai Municipal Education Commission (No. ZZsdl15104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Wang, Z., Jiang, J. (2015). Effect of Bias Temperature Instability on Soft Error Rate. In: Wang, G., Zomaya, A., Martinez, G., Li, K. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2015. Lecture Notes in Computer Science(), vol 9532. Springer, Cham. https://doi.org/10.1007/978-3-319-27161-3_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27161-3_67

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27160-6

  • Online ISBN: 978-3-319-27161-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics