Skip to main content

Bent and Semi-bent Functions via Linear Translators

  • Conference paper
  • First Online:
Cryptography and Coding (IMACC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 9496))

Included in the following conference series:

Abstract

The paper is dealing with two important subclasses of plateaued functions: bent and semi-bent functions. In the first part of the paper, we construct mainly bent and semi-bent functions in the Maiorana-McFarland class using Boolean functions having linear structures (linear translators) systematically. Although most of these results are rather direct applications of some recent results, using linear structures (linear translators) allows us to have certain flexibilities to control extra properties of these plateaued functions. In the second part of the paper, using the results of the first part and exploiting these flexibilities, we modify many secondary constructions. Therefore, we obtain new secondary constructions of bent and semi-bent functions not belonging to the Maiorana-McFarland class. Instead of using bent (semi-bent) functions as ingredients, our secondary constructions use only Boolean (vectorial Boolean) functions with linear structures (linear translators) which are very easy to choose. Moreover, all of them are very explicit and we also determine the duals of the bent functions in our constructions. We show how these linear structures should be chosen in order to satisfy the corresponding conditions coming from using derivatives and quadratic/cubic functions in our secondary constructions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Canteaut, A., Naya-Plasencia, M.: Structural weakness of mappings with a low differential uniformity. In: Conference on Finite Fields and Applications (2009)

    Google Scholar 

  2. Carlet, C., Prouff, E.: On plateaued functions and their constructions. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 54–73. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  3. Carlet, C., Yucas, J.L.: Piecewise constructions of bent and almost optimal boolean functions. Des. Codes Crypt. 37, 449–464 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Carlet, C.: On bent and highly nonlinear balanced/resilient functions and their algebraic immunities. In: Fossorier, M.P.C., Imai, H., Lin, S., Poli, A. (eds.) AAECC 2006. LNCS, vol. 3857, pp. 1–28. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Carlet, C.: Boolean functions for cryptography and error correcting codes. In: Crama, Y., Hammer, P.L. (eds.) Boolean Models and Methods in Mathematics, Computer Science, and Engineering, pp. 257–397. Cambridge University Press, Cambridge (2010)

    Chapter  Google Scholar 

  6. Carlet, C.: Open problems in mathematics and computational science. In: Kaya Koç, Ç. (ed.) Open Problems on Binary Bent Functions. Springer, Switzerland (2014)

    Chapter  Google Scholar 

  7. Carlet, C., Mesnager, S.: Four decades of research on bent functions. J. Des. Codes Crypt. (to appear)

    Google Scholar 

  8. Charpin, P., Kyureghyan, G.M.: On a class of permutation polynomials over \(\mathbb{F}_{2^n}\). In: Golomb, S.W., Parker, M.G., Pott, A., Winterhof, A. (eds.) SETA 2008. LNCS, vol. 5203, pp. 368–376. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Charpin, P., Kyureghyan, G.M.: When does \(G(x) + \gamma \, Tr(H(x))\) permute \(\mathbb{F}_2\)? Finite Fields Appl. 15(5), 615–632 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Charpin, P., Kyureghyan, G.M.: Monomial functions with linear structure and permutation polynomials. In: Finite Fields: Theory and Applications - Fq9 - Contemporary Mathematics, vol. 518, pp. 99–111. AMS (2010)

    Google Scholar 

  11. Charpin, P., Kyureghyan, G.M., Suder, V.: Sparse permutations with low differential uniformity. Finite Fields Appl. 28, 214–243 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Charpin, P., Mesnager, S., Sarkar, S.: On involutions of finite fields. In: Proceedings of 2015 IEEE International Symposium on Information Theory, ISIT (2015)

    Google Scholar 

  13. Charpin, P., Sarkar, S.: Polynomials with linear structure and Maiorana-McFarland construction. IEEE Trans. Inf. Theory 57(6), 3796–3804 (2011)

    Article  MathSciNet  Google Scholar 

  14. Chee, S., Lee, S., Kim, K.: Semi-bent functions. In: Safavi-Naini, R., Pieprzyk, J.P. (eds.) ASIACRYPT 1994. LNCS, vol. 917, pp. 107–118. Springer, Heidelberg (1995)

    Google Scholar 

  15. Dillon, J.: Elementary hadamard difference sets. Ph.D. Dissertation, University of Maryland, College Park (1974)

    Google Scholar 

  16. Kyureghyan, G.: Constructing permutations of finite fields via linear translators. J. Comb. Theory Ser. A 118(3), 1052–1061 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lai, X.: Additive and linear structures of cryptographic functions. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 75–85. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  18. Mesnager, S.: Semi-bent functions from oval polynomials. In: Stam, M. (ed.) IMACC 2013. LNCS, vol. 8308, pp. 1–15. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  19. Mesnager, S.: Several new infinite families of bent functions and their duals. IEEE Trans. Inf. Theory. 60(7), 4397–4407 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mesnager, S.: Open problems in mathematics and computational science. In: Kaya Koç, Ç. (ed.) On Semi-bent Functions and Related Plateaued Functions Over the Galois Field \(F_{2^n}\). Springer, Switzerland (2014)

    Google Scholar 

  21. Mesnager, S.: Further constructions of infinite families of bent functions from new permutations and their duals. J. Crypt. Commun. (CCDS). Springer (to appear)

    Google Scholar 

  22. Mesnager, S.: Bent functions: fundamentals and results. Springer (2015, to appear)

    Google Scholar 

  23. Rothaus, O.-S.: On bent functions. J. Combin. Theory Ser. A. 20, 300–305 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sun, G., Wu, C.: Construction of semi-bent boolean functions in even number of variables. Chin. J. Electron. 18(2), 231–237 (2009)

    MathSciNet  Google Scholar 

  25. Zheng, Y., Zhang, X.-M.: Plateaued functions. In: Varadharajan, V., Mu, Y. (eds.) ICICS 1999. LNCS, vol. 1726, pp. 284–300. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

Download references

Acknowledgment

The authors would like to thank the anonymous reviewers and the program committee for the detailed and constructive comments which improved the paper a lot.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferruh Özbudak .

Editor information

Editors and Affiliations

A Appendix

A Appendix

The following proposition is related to Proposition 4 in Sect. 4.

Proposition 8

Let H be defined by Eq. (4.1), \(\gamma \) and \(\delta \) be defined as in Proposition 4. Then the dual of H is \(\tilde{H}(x,y)=Tr_{1}^{m}\left( y \phi ^{-1}(x) \right) + h(\phi ^{-1}(x))\) where \(\phi ^{-1}={\pi _2}^{-1} \circ \rho ^{-1} \circ {\pi _1}^{-1}\) and \(\rho ^{-1}(x)\) is given as follows.

  1. (i)

    If \(\gamma \) is a 0-linear structure of f, \(\delta \) is a 0-linear structure of f and g, then

    $$\begin{aligned} \rho ^{-1}(x)=x+\gamma f(x)+\delta \left[ g(x)(1+f(x)) + g(x+\gamma )f(x)\right] . \end{aligned}$$
  2. (ii)

    If \(\gamma \) is a 0-linear structure of f, \(\delta \) is a 1-linear structure of f and \(\delta +\gamma \) is a 0-linear structure of g, then

    $$\begin{aligned} \rho ^{-1}(x)&=x+\gamma \left[ g(x)+f(x)\big (1+g(x)+g(x+\gamma )\big )\right] +\delta \left[ g(x)(1+f(x))\right. \\&\quad \left. +\,g(x+\gamma )f(x)\right] . \end{aligned}$$
  3. (iii)

    If \(\delta \) is a 0-linear structure of g, \(\gamma \) is a 0-linear structure of f and g, then

    $$\begin{aligned} \rho ^{-1}(x)=x+\gamma \left[ f(x)(1+g(x)) + f(x+\delta )g(x)\right] +\delta g(x). \end{aligned}$$
  4. (vi)

    If \(\delta \) is a 0-linear structure of g, \(\gamma \) is a 1-linear structure of g and \(\delta +\gamma \) is a 0-linear structure of f, then

    $$\begin{aligned} \rho ^{-1}(x)&=x+\gamma \left[ f(x)(1+g(x)) + f(x+\delta )g(x)\right] +\delta \left[ f(x)(1+g(x))\right. \\&\quad \left. +\,\big (1+f(x+\delta )\big )g(x)\right] . \end{aligned}$$
  5. (v)

    If \(\delta \) is a 1-linear structure of f or \(\delta \) is a 0-linear structure of g, then

    $$\begin{aligned} \rho ^{-1}(x)=x+\gamma \left[ f(x)(1+g(x+\delta )) + \big (1+f(x)\big )g(x)\right] +\delta f(x). \end{aligned}$$
  6. (vi)

    If \(\gamma \) is a 1-linear structure of g, \(\delta \) is a 1-linear structure of f and g, then

    $$\begin{aligned} \rho ^{-1}(x)=x+\gamma g(x)+\delta \left[ f(x)(1+g(x)) + f(x+\gamma )g(x)\right] . \end{aligned}$$

Proof

We give only the proof for the case (i). Assume that \(\gamma \) is a 0-linear structure of f, \(\delta \) is a 0-linear structure of f and g, then we claim that

$$\begin{aligned} \rho ^{-1}(x) = {\left\{ \begin{array}{ll} x &{} \quad \text {if}\; f(x)=0\;\; \text {and}\;\; g(x)=0\\ x+\delta &{} \quad \text {if}\;\ f(x)=0 \;\;\text {and}\;\; g(x)=1 \\ x+\gamma &{} \quad \text {if}\; f(x)=1\;\; \text {and}\;\; g(x+\gamma )=0 \\ x+\gamma +\delta &{} \quad \text {if}\; f(x)=1\;\;\text {and}\;\; g(x+\gamma )=1 \end{array}\right. } \end{aligned}$$
(A.1)

Let \(\rho (y)=a\). Then,

$$\begin{aligned} y+\gamma f(y) + \delta g(y)= & {} a \end{aligned}$$
(A.2)

Taking f of both sides gives \(f(y+\gamma f(y) + \delta g(y))=f(a)\). Since \(\gamma \) and \(\delta \) are 0-linear structures of f, we get

$$\begin{aligned} f(y)= & {} f(a). \end{aligned}$$
(A.3)

Note that, \(\big (f(a),g(a)\big ) \in \left\{ (0,0),(0,1),(1,0),(1,1)\right\} \). These four cases correspond to the cases in Eq. (A.1). We prove only the first case in Eq. (A.1) and the proofs of other cases are similar. Hence, we assume that \(\left( f(a),g(a)\right) =(0,0)\). Then, by Eq. (A.3), \(f(y)=0\) and by Eq. (A.2), \(y+\delta g(y)=a\). Taking g of both sides and using that \(\delta \) is a 0-linear structure of g, we obtain that \(g(y+\delta g(y))=g(y)=g(a)\). As \(g(a)=0\) by our assumption, we get \(g(y)=0\) and putting \(f(y)=g(y)=0\) in Eq. (A.2) we conclude that \(y=a\).

Finally, the Eq. (A.1) can be written in the form

$$\begin{aligned} \rho ^{-1}(x)=x+\gamma f(x)+\delta \left[ g(x)(1+f(x)) + g(x+\gamma )f(x)\right] . \end{aligned}$$

The following five propositions are related to Proposition 7 in Sect. 6.

Proposition 9

Let f and g be functions from \({\mathbb F}_{2^{m}}\) to \({\mathbb F}_{2^{}}\). For \(i\in \{1,2,3\}\) set \(\phi _i(y):=y+\gamma _i f(y)+\delta _i g(y)\) where

  1. (i)

    \(\gamma _1\), \(\gamma _2\), \(\gamma _3\) are elements of \({\mathbb F}_{2^{m}}^\star \) which are 0-linear structures of f;

  2. (ii)

    \(\delta _1\), \(\delta _2\) and \(\delta _3\) are elements of \({\mathbb F}_{2^{m}}^\star \) which are 1-linear structures of f;

  3. (iii)

    \(\gamma _1+\delta _1\), \(\gamma _2+\delta _2\), \(\gamma _3+\delta _3\) are 0-linear structures of g;

  4. (vi)

    \(\gamma _1 +\gamma _2\) and \(\gamma _1 +\gamma _3\) are 0-linear structures of g.

Then the function h defined on \({\mathbb F}_{2^{m}}\times {\mathbb F}_{2^{m}}\) by

$$\begin{aligned} h(x,y)&=Tr_{1}^{m} \Big ( x \phi _1(y)\Big )Tr_{1}^{m} \Big ( x \phi _2(y)\Big )+Tr_{1}^{m} \Big ( x \phi _1(y)\Big )Tr_{1}^{m} \Big ( x \phi _3(y)\Big ) \\&\quad +Tr_{1}^{m} \Big ( x \phi _2(y)\Big )Tr_{1}^{m} \Big ( x \phi _3(y)\Big ) \end{aligned}$$

is bent and the dual of h is given by

$$\begin{aligned} \tilde{h}(x,y)&= Tr_{1}^{m} \Big ( y \phi _1^{-1}(x)\Big )Tr_{1}^{m} \Big ( y \phi _2^{-1}(x)\Big )+Tr_{1}^{m} \Big ( y \phi _1^{-1}(x)\Big )Tr_{1}^{m} \Big ( y \phi _3^{-1}(x)\Big )\\&\quad +Tr_{1}^{m} \Big ( y \phi _2^{-1}(x)\Big )Tr_{1}^{m} \Big ( y \phi _3^{-1}(x)\Big ) \end{aligned}$$

where

$$\begin{aligned} \phi _i^{-1}(x)&= x+\gamma \left[ g(x)+f(x)\big (1+g(x)+g(x+\gamma )\big )\right] \\&\quad + \delta \left[ g(x)(1+f(x)) + g(x+\gamma )f(x)\right] . \end{aligned}$$

Proposition 10

Let f and g be functions from \({\mathbb F}_{2^{m}}\) to \({\mathbb F}_{2^{}}\). For \(i\in \{1,2,3\}\) set \(\phi _i(y):=y+\gamma _i f(y)+\delta _i g(y)\) where

  1. (i)

    \(\gamma _1\), \(\gamma _2\), \(\gamma _3\) are elements of \({\mathbb F}_{2^{m}}^\star \) which are 0-linear structures of f and g;

  2. (ii)

    \(\delta _1\), \(\delta _2\) and \(\delta _3\) are elements of \({\mathbb F}_{2^{m}}^\star \) which are 0-linear structures of g;

  3. (iii)

    \(\delta _1 +\delta _2\) and \(\delta _1 +\delta _3\) are 0-linear structures of f.

Then the function h defined on \({\mathbb F}_{2^{m}}\times {\mathbb F}_{2^{m}}\) by

$$\begin{aligned} h(x,y)&=Tr_{1}^{m} \Big ( x \phi _1(y)\Big )Tr_{1}^{m} \Big ( x \phi _2(y)\Big )+Tr_{1}^{m} \Big ( x \phi _1(y)\Big )Tr_{1}^{m} \Big ( x \phi _3(y)\Big ) \\&\quad +Tr_{1}^{m} \Big ( x \phi _2(y)\Big )Tr_{1}^{m} \Big ( x \phi _3(y)\Big ) \end{aligned}$$

is bent and the dual of h is given by

$$\begin{aligned} \tilde{h}(x,y)&= Tr_{1}^{m} \Big ( y \phi _1^{-1}(x)\Big )Tr_{1}^{m} \Big ( y \phi _2^{-1}(x)\Big )+Tr_{1}^{m} \Big ( y \phi _1^{-1}(x)\Big )Tr_{1}^{m} \Big ( y \phi _3^{-1}(x)\Big ) \\&\quad +Tr_{1}^{m} \Big ( y \phi _2^{-1}(x)\Big )Tr_{1}^{m} \Big ( y \phi _3^{-1}(x)\Big ) \end{aligned}$$

where \(\phi _i^{-1}(x)= x+\gamma \left[ f(x)(1+g(x)) + f(x+\delta )g(x)\right] +\delta g(x)\).

Proposition 11

Let f and g be functions from \({\mathbb F}_{2^{m}}\) to \({\mathbb F}_{2^{}}\). For \(i\in \{1,2,3\}\) set \(\phi _i(y):=y+\gamma _i f(y)+\delta _i g(y)\) where

  1. (i)

    \(\gamma _1\), \(\gamma _2\), \(\gamma _3\) are elements of \({\mathbb F}_{2^{m}}^\star \) which are 1-linear structures of g;

  2. (ii)

    \(\delta _1\), \(\delta _2\) and \(\delta _3\) are elements of \({\mathbb F}_{2^{m}}^\star \) which are 0-linear structures of g;

  3. (iii)

    \(\gamma _1+\delta _1\), \(\gamma _2+\delta _2\), \(\gamma _3+\delta _3\) are 0-linear structures of f;

  4. (vi)

    \(\delta _1 +\delta _2\) and \(\delta _1 +\delta _3\) are 0-linear structures of f.

Then the function h defined on \({\mathbb F}_{2^{m}}\times {\mathbb F}_{2^{m}}\) by

$$\begin{aligned} h(x,y)&=Tr_{1}^{m} \Big ( x \phi _1(y)\Big )Tr_{1}^{m} \Big ( x \phi _2(y)\Big )+Tr_{1}^{m} \Big ( x \phi _1(y)\Big )Tr_{1}^{m} \Big ( x \phi _3(y)\Big ) \\&\quad +Tr_{1}^{m} \Big ( x \phi _2(y)\Big )Tr_{1}^{m} \Big ( x \phi _3(y)\Big ) \end{aligned}$$

is bent and the dual of h is given by

$$\begin{aligned} \tilde{h}(x,y)&= Tr_{1}^{m} \Big ( y \phi _1^{-1}(x)\Big )Tr_{1}^{m} \Big ( y \phi _2^{-1}(x)\Big )+Tr_{1}^{m} \Big ( y \phi _1^{-1}(x)\Big )Tr_{1}^{m} \Big ( y \phi _3^{-1}(x)\Big )\\&\quad +Tr_{1}^{m} \Big ( y \phi _2^{-1}(x)\Big )Tr_{1}^{m} \Big ( y \phi _3^{-1}(x)\Big ) \end{aligned}$$

where

$$\begin{aligned} \phi _i^{-1}(x)&=x+\gamma \left[ f(x)(1+g(x)) + f(x+\delta )g(x)\right] \\&\quad +\delta \left[ f(x)(1+g(x)) + \big (1+f(x+\delta )\big )g(x)\right] . \end{aligned}$$

Proposition 12

Let f and g be functions from \({\mathbb F}_{2^{m}}\) to \({\mathbb F}_{2^{}}\). For \(i\in \{1,2,3\}\) set \(\phi _i(y):=y+\gamma _i f(y)+\delta _i g(y)\) where

  1. (i)

    \(\gamma _1\), \(\gamma _2\), \(\gamma _3\) are elements of \({\mathbb F}_{2^{m}}^\star \) which are 1-linear structures of f and g;

  2. (ii)

    \(\delta _1\), \(\delta _2\) and \(\delta _3\) are elements of \({\mathbb F}_{2^{m}}^\star \) which are 1-linear structures of f;

  3. (iii)

    \(\delta _1 +\delta _2\) and \(\delta _1 +\delta _3\) are 0-linear structures of g.

Then the function h defined on \({\mathbb F}_{2^{m}}\times {\mathbb F}_{2^{m}}\) by

$$\begin{aligned} h(x,y)&=Tr_{1}^{m} \Big ( x \phi _1(y)\Big )Tr_{1}^{m} \Big ( x \phi _2(y)\Big )+Tr_{1}^{m} \Big ( x \phi _1(y)\Big )Tr_{1}^{m} \Big ( x \phi _3(y)\Big ) \\&\quad +Tr_{1}^{m} \Big ( x \phi _2(y)\Big )Tr_{1}^{m} \Big ( x \phi _3(y)\Big ) \end{aligned}$$

is bent and the dual of h is given by

$$\begin{aligned} \tilde{h}(x,y)&= Tr_{1}^{m} \Big ( y \phi _1^{-1}(x)\Big )Tr_{1}^{m} \Big ( y \phi _2^{-1}(x)\Big )+Tr_{1}^{m} \Big ( y \phi _1^{-1}(x)\Big )Tr_{1}^{m} \Big ( y \phi _3^{-1}(x)\Big )\\&\quad +Tr_{1}^{m} \Big ( y \phi _2^{-1}(x)\Big )Tr_{1}^{m} \Big ( y \phi _3^{-1}(x)\Big ) \end{aligned}$$

where \(\phi _i^{-1}(x)=x+\gamma \left[ f(x)(1+g(x+\delta )) + \big (1+f(x)\big )g(x)\right] +\delta f(x)\).

Proposition 13

Let f and g be functions from \({\mathbb F}_{2^{m}}\) to \({\mathbb F}_{2^{}}\). For \(i\in \{1,2,3\}\) set \(\phi _i(y):=y+\gamma _i f(y)+\delta _i g(y)\) where

  1. (i)

    \(\gamma _1\), \(\gamma _2\), \(\gamma _3\) are elements of \({\mathbb F}_{2^{m}}^\star \) which are 1-linear structures of g;

  2. (ii)

    \(\delta _1\), \(\delta _2\) and \(\delta _3\) are elements of \({\mathbb F}_{2^{m}}^\star \) which are 1-linear structures of f and g;

  3. (iii)

    \(\gamma _1 +\gamma _2\) and \(\gamma _1 +\gamma _3\) are 0-linear structures of f.

Then the function h defined on \({\mathbb F}_{2^{m}}\times {\mathbb F}_{2^{m}}\) by

$$\begin{aligned} h(x,y)&=Tr_{1}^{m} \Big ( x \phi _1(y)\Big )Tr_{1}^{m} \Big ( x \phi _2(y)\Big )+Tr_{1}^{m} \Big ( x \phi _1(y)\Big )Tr_{1}^{m} \Big ( x \phi _3(y)\Big ) \\&\quad +Tr_{1}^{m} \Big ( x \phi _2(y)\Big )Tr_{1}^{m} \Big ( x \phi _3(y)\Big ) \end{aligned}$$

is bent and the dual of h is given by

$$\begin{aligned} \tilde{h}(x,y)&= Tr_{1}^{m} \Big ( y \phi _1^{-1}(x)\Big )Tr_{1}^{m} \Big ( y \phi _2^{-1}(x)\Big )+Tr_{1}^{m} \Big ( y \phi _1^{-1}(x)\Big )Tr_{1}^{m} \Big ( y \phi _3^{-1}(x)\Big )\\&\quad +Tr_{1}^{m} \Big ( y \phi _2^{-1}(x)\Big )Tr_{1}^{m} \Big ( y \phi _3^{-1}(x)\Big ) \end{aligned}$$

where \(\phi _i^{-1}(x)=x+\gamma g(x)+\delta \left[ f(x)(1+g(x)) + f(x+\gamma )g(x)\right] \).

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Koçak, N., Mesnager, S., Özbudak, F. (2015). Bent and Semi-bent Functions via Linear Translators. In: Groth, J. (eds) Cryptography and Coding. IMACC 2015. Lecture Notes in Computer Science(), vol 9496. Springer, Cham. https://doi.org/10.1007/978-3-319-27239-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27239-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27238-2

  • Online ISBN: 978-3-319-27239-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics