Skip to main content

Modelling Image Processing with Discrete First-Order Swarms

  • Conference paper
  • First Online:
Advances in Nature and Biologically Inspired Computing

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 419))

  • 865 Accesses

Abstract

So far most applications of swarm behaviour in image analysis use swarms as models for optimisation tasks. In our paper, we follow a different philosophy and propose to exploit them as valuable tools for modelling image processing problems. To this end, we consider models of swarming that are individual-based and of first order. We show that a suitable adaptation of the potential forces allows us to model three classical image processing tasks: grey scale quantisation, contrast enhancement, and line detection. These proof-of-concept applications demonstrate that modelling image analysis tasks with swarms can be simple, intuitive, and highly flexible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    If this becomes too time-consuming, one can also consider more efficient, so-called implicit schemes [13]. However, they require to solve linear or nonlinear systems of equations.

  2. 2.

    It is clear from the structure of our approach and the experiments that the quantisation levels depend on the actual image histogram and are not necessarily equidistant.

References

  1. Aranda, R., Rivera, M., Ramirez-Manzanares, A.: A flocking based method for brain tractography. Med. Image Anal. 18(3), 515–530 (2014)

    Article  Google Scholar 

  2. Clark, P.J., Evans, F.C.: Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology 35(4), 445–453 (1954)

    Article  Google Scholar 

  3. Colorni, A., Dorigo, M., Maniezzo, V.: Distributed optimization by ant colonies. In: Proceedings of the First European Conference On Artificial Life. pp. 134–142. Paris, France (1991)

    Google Scholar 

  4. Couzin, I.D., Krause, J., James, R., Ruxton, G.D., Franks, N.R.: Collective memory and spatial sorting in animal groups. J. Theor. Biol. 218(1), 1–11 (2002)

    Article  MathSciNet  Google Scholar 

  5. Cucker, F., Smale, S.: Emergent behavior in flocks. IEEE Trans. Autom. Control 52(5), 852–862 (2007)

    Article  MathSciNet  Google Scholar 

  6. Duda, R.O., Hart, P.E.: Use of the Hough transformation to detect lines and curves in pictures. Commun. ACM 15(1), 11–15 (1972)

    Article  MATH  Google Scholar 

  7. Fine, B.T., Shell, D.A.: Unifying microscopic flocking motion models for virtual, robotic, and biological flock members. Auton. Robot. 35(2–3), 195–219 (2013)

    Article  Google Scholar 

  8. Gazi, V.: On Lagrangian dynamics based modeling of swarm behavior. Phys. D Nonlinear Phenom. 260, 159–175 (2013)

    Article  MathSciNet  Google Scholar 

  9. Gazi, V., Fidan, B.: Coordination and control of multi-agent dynamic systems: models and approaches. In: Sahin, E., Spears, W.M., Winfield, A.F.T. (eds.) Swarm Robotics. Lecture Notes in Computer Science, vol. 4433, pp. 71–102. Springer, Berlin (2007)

    Chapter  Google Scholar 

  10. Gazi, V., Passino, K.M.: Stability analysis of social foraging swarms. IEEE Trans. Syst. Man Cybern. Part B Cybern. 34(1), 539–557 (2004)

    Article  Google Scholar 

  11. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks. vol. 4, pp. 1942–1948. Perth, WA (1995)

    Google Scholar 

  12. Kirchmaier, U., Hawe, S., Diepold, K.: A swarm intelligence inspired algorithm for contour detection in images. Appl. Soft Comput. 13(6), 3118–3129 (2013)

    Article  Google Scholar 

  13. LeVeque, R.J.: Finite Difference Methods for Ordinary and Partial Differential Equations. SIAM, Philadelphia (2007)

    Book  MATH  Google Scholar 

  14. Liu, J., Tang, Y.Y.: Adaptive image segmentation with distributed behavior-based agents. IEEE Trans. Pattern Anal. Mach. Intell. 21(6), 544–551 (1999)

    Article  Google Scholar 

  15. Marthaler, D., Bertozzi, A.L.: Tracking environmental level sets with autonomous vehicles. Recent Developments in Cooperative Control and Optimization. Cooperative Systems, vol. 3, pp. 317–332. Springer, New York (2004)

    Chapter  Google Scholar 

  16. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. ACM SIGGRAPH Comput. Graph. 21(4), 25–34 (1987)

    Article  Google Scholar 

  17. Schmaltz, C., Gwosdek, P., Weickert, J.: Electrostatic halftoning. Comput. Graph. Forum 29(8), 2313–2327 (2010)

    Article  Google Scholar 

  18. Signal and Image Processing Institute of the University of Southern California: The USC-SIPI image database (2015). Last visited August 16, 2015, http://sipi.usc.edu/database/

  19. Simone, G., Audino, G., Farup, I., Albregtsen, F., Rizzi, A.: Termite retinex: a new implementation based on a colony of intelligent agents. J. Electron. Imaging 23(1), 013006 (2014)

    Article  Google Scholar 

  20. Sumpter, D.J.T.: The principles of collective animal behaviour. Philos. Trans. R. Soc. B: Biol. Sci. 361(1465), 5–22 (2005)

    Article  Google Scholar 

  21. Triandaf, I., Schwartz, I.B.: A collective motion algorithm for tracking time-dependent boundaries. Math. Comput. Simul. 70(4), 187–202 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75, 1226–1229 (1995)

    Article  Google Scholar 

  23. Vicsek, T., Zafeiris, A.: Collective motion. Phys. Rep. 517(3–4), 71–140 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

Our research activities have been supported financially by the Deutsche Forschungsgemeinschaft (DFG) through a Gottfried Wilhelm Leibniz Prize. This is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leif Bergerhoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Bergerhoff, L., Weickert, J. (2016). Modelling Image Processing with Discrete First-Order Swarms. In: Pillay, N., Engelbrecht, A., Abraham, A., du Plessis, M., Snášel, V., Muda, A. (eds) Advances in Nature and Biologically Inspired Computing. Advances in Intelligent Systems and Computing, vol 419. Springer, Cham. https://doi.org/10.1007/978-3-319-27400-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27400-3_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27399-0

  • Online ISBN: 978-3-319-27400-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics