Skip to main content

Training Pattern Classifiers with Physiological Cepstral Features to Recognise Human Emotion

  • Conference paper
  • First Online:
Advances in Nature and Biologically Inspired Computing

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 419))

Abstract

The choice of a suitable set of features based on physiological signals to be utilised in enhancing the recognition of human emotion remains a burning issue in affective computing research. In this study, using the MAHNOB-HCI corpus, we extracted cepstral features from the physiological signals of galvanic skin response, electrocardiogram, electroencephalogram, skin temperature and respiration amplitude to train two state of the art pattern classifiers to recognise seven classes of human emotions. The important task of emotion recognition is largely considered a classification problem and on this basis, we carried out experiments in which the extracted physiological cepstral features were transmitted to Gaussian Radial Basis Function (RBF) neural network and Support Vector Machines (SVM) pattern classifiers for human emotion recognition. The RBF neural network pattern classifier gave the recognition accuracy of 99.5 %, while the SVM pattern classifier posted 75.0 % recognition accuracy. These results indicate the suitability of using cepstral features extracted from fused modality physiological signals with the Gaussian RBF neural network pattern classifier for efficient recognition of human emotion in affective computing systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ekman, P., Rosenberg, E.L.: What the Face Reveals: Basic and Applied Studies of Spontaneous Expression Using the Facial Action Coding System, 2nd edn. Oxford University Press, Oxford (2005)

    Book  Google Scholar 

  2. Fried, E.: The impact of nonverbal communication of facial affect on children’s learning. Ph.D. dissertation, Rutgers University (1976)

    Google Scholar 

  3. Larson, J., Rodriguez, C.: Road Rage to Road-Wise, 1st edn. Tom Doherty Associates Inc., New York (1999)

    Google Scholar 

  4. Cohn, J.F., Tronick, E.Z.: Mother-infant interaction: the sequence of dyadic states at three, six, and nine months. Dev. Psychol. 24(3), 386–392 (1988)

    Article  Google Scholar 

  5. Won-Joong Y., Kyu-Sik P.: A study of Emotion Recognition and its Applications. Modeling Decisions for Artificial Intelligence. Lecture notes in Computer Science, vol. 4617, pp. 455–462. Springer-Verlage, Berlin Heidelberg (2007)

    Google Scholar 

  6. Ramakrishnan, S.: Recognition of emotion from speech: a review. In: Ramakrishnan, S. (ed.) Speech Enhancement, Modeling and Recognition-Algorithms and Applications. Intec, (2012). ISBN:978-953-51-0291-5

    Google Scholar 

  7. Noppadon, J., Setha, P., Pasin, I.: Real-time EEG based happiness detection system. Sci. World J., Article id 618649. Hindawi Publishing Corporation (2013)

    Google Scholar 

  8. Jonghwa, K., Andre, E.: Emotion recognition based on physiological changes in music listening. IEEE Trans. Pattern Anal. Mach. Intell. 30(12), 2067–2083 (2008)

    Article  Google Scholar 

  9. Nasoz, F., Alvarez, K., Lisetti, C., Finkelstein, N.: Emotion recognition from physiological signals using wireless sensors for presence technologies. Cogn. Technol. Work 6(1), 4–14 (2004)

    Article  Google Scholar 

  10. Soleymani, M., Jeroen, L., Pun, T., Pantic, M.: A multimodal database for affect recognition and implicit tagging. IEEE Trans. Affect. Comput. 3(1), 42–55 (2012)

    Article  Google Scholar 

  11. Amit, K., Aruna, C.: Emotion Recognition: A Pattern Analysis Approach. Wiley (2014). ISBN:1118130669, 9781118130667

    Google Scholar 

  12. Zong, C., Chetouani, M.: Hilbert-Huang transform based physiological signals analysis for emotion recognition. In: Proceedings of IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), pp. 334–339 (2009)

    Google Scholar 

  13. Lanjewar, R.B., Chaudhari, D.S.: Speech emotion recognition: a review. Int. J. Innovative Technol. Exploring Eng (IJITEE) 2(4), 68–71 (2013). ISSN:2278–3075

    Google Scholar 

  14. James, A.R., Jo-Anne, B., Jose-Miguel, F.: Facial and vocal expressions of emotion. Annu. Rev. Psychol. 54, 329–349 (2003)

    Article  Google Scholar 

  15. Heng, Y.P., Lili, N.A., Alfian, A.H., Puteri, S.S.: A study of physiological signals-based emotion recognition systems. Int. J. Comput. Technol. 11(1), 2189–2196 (2013)

    Google Scholar 

  16. Jerritta, S., Murugappan, M., Nagarajan, R., Wan, K.: Physiological signals based human emotion Recognition: A review. In: Proceedings of IEEE 7th International Colloquium Signal Processing and Its Applications (CSPA), pp. 410–415 (2011)

    Google Scholar 

  17. Soma, B., Shanthi, T., Madhuri, G.: Emotion recognition using combination of MFCC and LPCC with supply vector machine. IOSR J. Comput. Eng. (IOSR-JCE) 17(4), 01–08 (2015). e-ISSN:2278-0661, p-ISSN: 2278-8727

    Google Scholar 

  18. Kumar, P., Lahudkar, S.L.: Automatic speaker recognition using LPCC and MFCC. Int. J. Recent Innovation Trends Comput Commun. 3(4), pp. 2106–2109 (2015). ISSN:2321-8169

    Google Scholar 

  19. Silvia, M.F., Marius, D.Z.: Emotion recognition in romanian language using LPC features. In: The 4th IEEE International Conference on E-Health and Bioengineering—EHB 2013, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania, Nov 21–23 2013

    Google Scholar 

  20. Taabish, G., Anand, S., Sandeep, S.: Comparative analysis of LPCC, MFCC and BFCC for the recognition of Hindi words using artificial neural networks. Int. J. Comput. Appl. (0975–8887) 101(12), 22–27 (2014)

    Google Scholar 

  21. Yixiong, P., Peipei, S., Liping, S.: Speech emotion recognition using support vector machine. Int. J. Smart Home. 6(2), 101–108 (2012)

    Google Scholar 

  22. Peipei, S., Zhou, C., Xiong, C.: Automatic speech emotion recognition using support vector machine. In: International Conference on Electronic and Mechanical Engineering and Information Technology, pp. 621–625 (2011)

    Google Scholar 

  23. Ravelo-Garcial, A.G., Navarro-Mesal, J.L., Hemadez-Perezl, E., Martin-Gonzalezl, S., Quintana-Moralesl, P., Guerra-Morenol, I., et al.: Cepstrum feature selection for the classification of sleep Apnea-Hypopnea syndrome based on heart rate variability. Comput. Cardiol. 40, 959–962 (2013)

    Google Scholar 

  24. Zhouyu, F., Guojun, L., Kai, M.T., Dengsheng, Z.: Optimizing cepstral features for audio classification. In: Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, pp. 1330–1336 (2013)

    Google Scholar 

  25. McCormick, C.: Computer vision and machine learning projects and tutorials. Radial Basis Function Network (RBFN) Tutorial (2013)

    Google Scholar 

  26. Bors, A.G.: Introduction of the Radial Basis Functions (RBF) Networks. The York Research database. Online Symposium of Electronics Engineers (2001)

    Google Scholar 

  27. Ugur, H.: Artificial Neural Networks. Ch. 9, EE543 Lecture Notes (2004)

    Google Scholar 

  28. Xianhai, Guo: Study of emotion recognition based on electrocardiogram and RBF neural network. Procedia Eng. 15, 2408–2412 (2011)

    Article  Google Scholar 

  29. Venkatesan, P., Anitha, S.: Application of a radial basis function neural network for diagnosis of diabetes mellitus. Curr. Sci. 91(9) (2006)

    Google Scholar 

  30. Saastamoinen, A., Pietilä, T., Värri, A., Lehtokangas, M., Saarinen, J.: Waveform detection with RBF network—application to automated EEG analysis. Neurocomputing 20, 1–13 (1998)

    Article  MATH  Google Scholar 

  31. Yojna, A., Abhishek, S., Abhay, B.: A study of applications of RBF network. Int. J. Comput. Appl. (0975–8887) 94(2) (2014)

    Google Scholar 

  32. Corina, C., Vladimir, V.: Support-vector networks. Machine Learning, vol. 20, pp. 273–297. Kluwer Academic Publishers, Boston. Manufactured in The Netherlands (1995)

    Google Scholar 

  33. Pazhanirajan, S., Dhanalakshmi, P.: EEG signal classification using linear predictive cepstral coefficient features. Int. J. Comput. Appl. (0975–8887) 73(1) (2013)

    Google Scholar 

  34. Tokunbo, O., Roberto, T., Madihally, S.N.: Speech and Audio Processing for Coding, Enhancement and Recognition. Springer, New York (2014)

    Google Scholar 

  35. Abe, B.T., Olugbara, O.O., Marwala, T.: Experimental comparison of support vector machines with random forests for hyperspectral image land cover classification. J. Earth Syst. Sci. 123(4), 779–790 (2014)

    Article  Google Scholar 

  36. Ahmad, F., Roy, K., O’Connor, B., Shelton, J., Dozier, G., Dworkin, I.: Fly wing biometrics using modified local binary pattern, SVMs and random forest. Int. J. Mach. Learn. Comput. 4(3), 279–285 (2014)

    Article  Google Scholar 

  37. Qi, P.L.: Speaker Authentication, pp. 174–175. Springer Science and Business Media (2011)

    Google Scholar 

  38. Lindasalwa, M., Mumtaj, B., Elamvazuthi, I.: Voice recognition algorithms using mel frequency cepstral coefficient (MFCC) and dynamic time warping (DTW) techniques. J. Comput. 2(3), pp. 138–143 (2010). ISSN:2151-9617

    Google Scholar 

  39. Haifeng, S., Jun, G., Gang, L., Qunxia, L.: Non-stationary environment compensation using sequential EM algorithm for robust speech recognition. In: Jorge, A. et al. (eds.) pp. 264–273. Springer-Verlag, Berlin Heinderg (2005)

    Google Scholar 

  40. Honig, F., Wagner, J., Batliner, A., Noth, E.: Classification of user states with physiological signals: On-line generic features versus specialized feature sets. In: 17th European Signal Processing Conference 2009, Glasgow, Scotland, pp. 2357–2361 (2009)

    Google Scholar 

  41. Maaoui, C., Pruski, A.: Emotion recognition through physiological signals for human-machine communication in cutting edge robotics 2010. In: Kordic, V. (ed.) (2010)

    Google Scholar 

  42. Gu, Y., Tan, S.-L., Wong, K.-J., Ho, M.-H. R., Qu, L.: A biometric signature based system for improved emotion recognition using physiological responses from multiple subjects In 8th IEEE International Conference on Industrial Informatics (INDIN), 2010 Osaka, 2010

    Google Scholar 

  43. Wan-Hui, W., Yu-Hui, Q., Guang-Yuan, L.: Electrocardiography recording, feature extraction and classification for emotion recognition. In: WRI World Congress on Computer Science and Information Engineering Los Angeles, CA (2009)

    Google Scholar 

  44. Renukadevi, N.T., Thangaraj P.: Performance evaluation of SVM–RBF Kernel for medical image. Classifi. Global J. Comput. Sci. Technol. Graph. Vis, 13(4), Version 1.0, (2013)

    Google Scholar 

  45. Anguita, D., Ghelardoni, L., Ghio, A., Oneto, L., Ridella, S.: The ‘K’ in K-fold cross validation. In: Proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Bruges (Belgium), pp. 441–446 (2012)

    Google Scholar 

  46. Hsu, C.W., Chang, C.C., Lin, C.J.: A Practical Guide to Support Vector Classification. Technical report (2000)

    Google Scholar 

  47. Hastie, T., Tibshirani, R., Friedman, J., Franklin, J.: The elements of statistical learning: data mining, inference and prediction. Math. Intell. 27(2), 83–85 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdultaofeek Abayomi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Abayomi, A., Olugbara, O.O., Adetiba, E., Heukelman, D. (2016). Training Pattern Classifiers with Physiological Cepstral Features to Recognise Human Emotion. In: Pillay, N., Engelbrecht, A., Abraham, A., du Plessis, M., Snášel, V., Muda, A. (eds) Advances in Nature and Biologically Inspired Computing. Advances in Intelligent Systems and Computing, vol 419. Springer, Cham. https://doi.org/10.1007/978-3-319-27400-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27400-3_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27399-0

  • Online ISBN: 978-3-319-27400-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics