Skip to main content

Shape Recognition Through Tactile Contour Tracing

A Simulation Study

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((TCCI,volume 9420))

Abstract

We present Contour-net, a bio-inspired model for tactile contour-tracing driven by an Hopf oscillator. By controlling the rhythmic movements of a simulated insect-like feeler, the model executes both wide searching and local sampling movements. Contour-tracing is achieved by means of contact-induced phase-forwarding of the oscillator. To classify the shape of an object, collected contact events can be directly fed into machine learning algorithms with minimal pre-processing (scaling). Three types of classifiers were evaluated, the best one being a Support Vector Machine. The likelihood of correct classification steadily increases with the number of collected contacts, enabling an incremental classification during sampling. Given a sufficiently large training data set, tactile shape recognition can be achieved in a position-, orientation- and size-invariant manner. The suitability for robotic applications is discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bellman, R.E.: Adaptive Control Processes: A Guided Tour, vol. 4. Princeton University Press, Princeton (1961)

    MATH  Google Scholar 

  • Brambilla, G., Buchli, J., Ijspeert, A.J.: Adaptive four legged locomotion control based on nonlinear dynamical systems. In: Nolfi, S., Baldassarre, G., Calabretta, R., Hallam, J.C.T., Marocco, D., Meyer, J.-A., Miglino, O., Parisi, D. (eds.) SAB 2006. LNCS (LNAI), vol. 4095, pp. 138–149. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  • Buchli, J., Righetti, L., Ijspeert, A.J.: A dynamical systems approach to learning: a frequency-adaptive hopper robot. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds.) ECAL 2005. LNCS (LNAI), vol. 3630, pp. 210–220. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  • Ciresan, D., Meier, U., Schmidhuber, J.: Multi-column deep neural networks for image classification. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3642–3649. IEEE (2012)

    Google Scholar 

  • Ciresan, D.C., Meier, U., Gambardella, L.M., Schmidhuber, J.: Deep, big, simple neural nets for handwritten digit recognition. Neural Comput. 22, 3207–3220 (2010)

    Article  Google Scholar 

  • Cruse, H., Kindermann, T., Schumm, M., Dean, J., Schmitz, J.: Walknet - a biologically inspired network to control six-legged walking. Neural Netw. 11, 1435–1447 (1998)

    Article  Google Scholar 

  • Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 248–255. IEEE (2009)

    Google Scholar 

  • Dürr, V., Ebeling, W.: The behavioural transition from straight to curve walking: kinetics of leg movement parameters and the initiation of turning. J. Exp. Biol. 208, 2237–2252 (2005). doi:10.1242/jeb.01637

    Article  Google Scholar 

  • Dürr, V., König, Y., Kittmann, R.: The antennal motor system of the stick insect Carausius morosus: Anatomy and antennal movement pattern during walking. J. Comp. Physiol. A 187(2), 131–144 (2001). doi:10.1007/s003590100183

    Article  Google Scholar 

  • Dürr, V., Schmitz, J., Cruse, H.: Behaviour-based modelling of hexapod locomotion: linking biology and technical application. Arthropod Struct. Dev. 33(3), 237–250 (2004). doi:10.1016/j.asd.2004.05.004

    Article  Google Scholar 

  • Erber, J., Kierzek, S., Sander, E., Grandy, K.: Tactile learning in the honeybee. J. Comp. Physiol. A 183, 737–744 (1998)

    Article  Google Scholar 

  • Esslen, J., Kaissling, K.-E.: Zahl und verteilung antennaler sensillen bei der honigbiene (Apis mellifera l.). Zoomorphology 83, 227–251 (1976). doi:10.1007/BF00993511

    Article  Google Scholar 

  • Harischandra, N., Krause, A.F., Dürr, V.: Stable phase-shift despite quasi-rhythmic movements: a CPG-driven dynamic model ofactive tactile exploration in an insect. Front. Comput. Neurosci. 9(107) (2015). doi:10.3389/fncom.2015.00107

  • Hoinville, T., Harischandra, N., Krause, A.F., Dürr, V.: Insect-inspired tactile contour sampling using vibration-based robotic antennae. In: Duff, A., Lepora, N.F., Mura, A., Prescott, T.J., Verschure, P.F.M.J. (eds.) Living Machines 2014. LNCS, vol. 8608, pp. 118–129. Springer, Heidelberg (2014). http://dx.doi.org/10.1007/978-3-319-09435-9_11

    Google Scholar 

  • Hoinville, T., Wehner, R., Cruse, H.: Learning and retrieval of memory elements in a navigation task. In: Prescott, T.J., Lepora, N.F., Mura, A., Verschure, P.F.M.J. (eds.) Living Machines 2012. LNCS, vol. 7375, pp. 120–131. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  • Huang, G.-B.: An insight into extreme learning machines: random neurons, random features and kernels. Cogn. Comput. 6(3), 376–390 (2014)

    Article  Google Scholar 

  • Huang, G.-B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 42(2), 513–529 (2012)

    Article  Google Scholar 

  • Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: theory and applications. Neurocomputing 70(1–3), 489–501 (2006)

    Article  Google Scholar 

  • Ijspeert, A.J.: Central pattern generators for locomotion control in animals and robots: a review. Neural Netw. 21(4), 642–653 (2008)

    Article  Google Scholar 

  • Ijspeert, A.J., Crespi, A., Ryczko, D., Cabelguen, J.-M.: From swimming to walking with a salamander robot driven by a spinal cord model. Science 315(5817), 1416–1420 (2007)

    Article  Google Scholar 

  • Ju, F., Ling, S.-F.: Bioinspired active whisker sensor for geometry detection of high aspect ratio microholes with simultaneous actuation and sensing capability. Smart Mater. Struct. 24(3) (2015)

    Google Scholar 

  • Kaneko, M., Kanayama, N., Tsuji, T.: 3-D active antenna for contact sensing. IEEE Int. Conf. Robot. Autom. (ICRA) 1, 1113–1119 (1995)

    Google Scholar 

  • Kaneko, M., Kanayma, N., Tsuji, T.: Active antenna for contact sensing. IEEE Trans. Robot. Autom. 14(2), 278–291 (1998)

    Article  Google Scholar 

  • Kaneko, M., Tsuji, T.: A whisker tracing sensor with 5 \(\mu \)m sensitivity. IEEE Int. Conf. Robot. Autom. (ICRA) 4, 3907–3912 (2000)

    Google Scholar 

  • Kevan, P.G., Lane, M.A.: Flower petal microtexture is a tactile cue for bees. Proc. Nat. Acad. Sci. 82(14), 4750–4752 (1985)

    Article  Google Scholar 

  • Kim, D., Möller, R.: Biomimetic whiskers for shape recognition. Robot. Autonom. Syst. 55(3), 229–243 (2007)

    Article  MATH  Google Scholar 

  • Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. Proc. Int. Joint Conf. Artif. Intell. (IJCAI) 14, 1137–1145 (1995)

    Google Scholar 

  • Krause, A.F., Dürr, V.: Tactile efficiency of insect antennae with two hinge joints. Biol. Cybern. 91(3), 168–181 (2004). doi:10.1007/s00422-004-0490-6

    Article  MATH  Google Scholar 

  • Krause, A.F., Dürr, V.: Active tactile sampling by an insect in a step-climbing paradigm. Front. Behav. Neurosci. 6(30), 1–17 (2012). doi:10.3389/fnbeh.2012.00030

    Google Scholar 

  • Krause, A.F., Essig, K., Essig-Shih, L.-Y., Schack, T.: Classifying the differences in gaze patterns of alphabetic and logographic L1 readers – a neural network approach. In: Iliadis, L., Jayne, C. (eds.) EANN/AIAI 2011, Part I. IFIP AICT, vol. 363, pp. 78–83. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  • Krause, A.F., Essig, K., Piefke, M., Schack, T.: No-prop-fast - a high-speed multilayer neural network learning algorithm: mnist benchmark and eye-tracking data classification. In: Iliadis, L., Papadopoulos, H., Jayne, C. (eds.) Engineering Applications of Neural Networks (EANN 2013), pp. 446–455. Springer, Berlin Heidelberg (2013)

    Chapter  Google Scholar 

  • Krause, A.F., Winkler, A., Dürr, V.: Central drive and proprioceptive control of antennal movements in the walking stick insect. J. Physiol. Paris 107(1–2), 116–129 (2013b). doi:10.1016/j.jphysparis.2012.06.001

    Article  Google Scholar 

  • Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Bartlett, P. (ed.) Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012, pp. 1097–1105. Curran Associates Inc, Red Hook (2012)

    Google Scholar 

  • LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  • Lederman, S., Klatzky, R.: Haptic perception: a tutorial. Attention Percept. Psychophys. 71(7), 1439–1459 (2009). doi:10.3758/APP.71.7.1439

    Article  Google Scholar 

  • Legland, D.: Geom2d toolbox (2012). http://matgeom.sourceforge.net/

  • Møller, M.F.: A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw. 6(4), 525–533 (1993)

    Article  Google Scholar 

  • Patanè, L., Hellbach, S., Krause, A.F., Arena, P., Dürr, V.: An insect-inspired bionic sensor for tactile localization and material classification with state-dependent modulation. Front. Neurorobot. 6(8), 1–18 (2012). doi:10.3389/fnbot.2012.00008

    Google Scholar 

  • Pearson, M.J., Fox, C., Sullivan, J.C., Prescott, T.J., Pipe, T., Mitchinson, B.: Simultaneous localisation and mapping on a multi-degree of freedom biomimetic whiskered robot. In: Antonelli, G., et al. (eds.) 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 586–592. IEEE (2013)

    Google Scholar 

  • Pearson, M.J., Pipe, A.G., Melhuish, C., Mitchinson, B., Prescott, T.J.: Whiskerbot: a robotic active touch system modeled on the rat whisker sensory system. Adapt. Behav. 15(3), 223–240 (2007)

    Article  Google Scholar 

  • Prescott, T.J., Dürr, V.: The world of touch. Scholarpedia 10(4), 32688 (2015). doi:10.4249/scholarpedia.32688

    Article  Google Scholar 

  • Ranzato, M., Poultney, C., Chopra, S., LeCun, Y.: Efficient learning of sparse representations with an energy-based model. In: Platt, J. (ed.) Advances in Neural Information Processing Systems (NIPS 2006), vol. 19. MIT Press, Cambridge (2006)

    Google Scholar 

  • Refaeilzadeh, P., Tang, L., Liu, H.: Cross-validation. Encyclopedia of Database Systems, pp. 532–538. Springer, Berlin (2009)

    Google Scholar 

  • Righetti, L., Ijspeert, A.J.: Programmable central pattern generators: an application to biped locomotion control. In: Hutchinson, S., et al. (eds.) IEEE International Conference on Robotics and Automation (ICRA), pp. 1585–1590. IEEE (2006)

    Google Scholar 

  • Russell, R.A., Wijaya, J.A.: Object location and recognition using whisker sensors. In: Roberts, J., Wyeth, G. (eds.) Australasian Conference on Robotics and Automation, pp. 761–768 (2003)

    Google Scholar 

  • Schilling, M., Hoinville, T., Schmitz, J., Cruse, H.: Walknet, a bio-inspired controller for hexapod walking. Biol. Cybern. 107(4), 397–419 (2013). doi:10.1007/s00422-013-0563-5

    Article  MathSciNet  Google Scholar 

  • Schütz, C., Dürr, V.: Active tactile exploration for adaptive locomotion in the stick insect. Philos. Trans. R. Soc. B: Biol. Sci. 366(1581), 2996–3005 (2011). doi:10.1098/rstb.2011.0126

    Article  Google Scholar 

  • Solomon, J.H., Hartmann, M.J.: Biomechanics: robotic whiskers used to sense features. Nature 443(7111), 525 (2006)

    Article  Google Scholar 

  • Staudacher, E., Gebhardt, M.J., Dürr, V.: Antennal movements and mechanoreception: neurobiology of active tactile sensors. Adv. Insect Physiol. 32, 49–205 (2005). doi:10.1016/S0065-2806(05)32002-9

    Article  Google Scholar 

  • Sullivan, J., Mitchinson, B., Pearson, M.J., Evans, M., Lepora, N.F., Fox, C.W., Melhuish, C., Prescott, T.J.: Tactile discrimination using active whisker sensors. IEEE Sens. J. 12(2), 350–362 (2012)

    Article  Google Scholar 

  • Widrow, B., Greenblatt, A., Kim, Y., Park, D.: The No-Prop algorithm: a new learning algorithm for multilayer neural networks. Neural Netw. 37, 182–188 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by EU grant EMICAB (FP7-ICT, grant no. 270182) to Prof. Volker Dürr. We thank Thierry Hoinville for many important suggestion regarding the model, and Holk Cruse for valuable comments on earlier versions of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Frank Krause .

Editor information

Editors and Affiliations

Appendix

Appendix

The following link provides a zip archive that contains the Matlab scripts and data sets that were used to train the neural networks and support vector machines. Further, scripts are included to generate custom training data sets using the Contour-net method. http://www.andre-krause.net/publications/tcci15krause.zip

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Krause, A.F., Harischandra, N., Dürr, V. (2015). Shape Recognition Through Tactile Contour Tracing. In: Nguyen, N., Kowalczyk, R., Duval, B., van den Herik, J., Loiseau, S., Filipe, J. (eds) Transactions on Computational Collective Intelligence XX . Lecture Notes in Computer Science(), vol 9420. Springer, Cham. https://doi.org/10.1007/978-3-319-27543-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27543-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27542-0

  • Online ISBN: 978-3-319-27543-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics